
Université Paris Diderot (Paris 7)
École doctorale de Sciences Mathématiques de Paris Centre

Thèse
pour obtenir le grade de

Docteur de l’Université Paris Diderot
Spécialité : Informatique

Présentée par

Nataliya Guts

Directeurs : Jean-Jacques Lévy et Francesco Zappa Nardelli

Auditabilité pour les protocoles de sécurité

Auditability for security protocols

Soutenue le 11 janvier 2011
devant le jury composé de :

M. Gilles Barthe rapporteur
M. Roberto Di Cosmo président du jury
M. Cédric Fournet examinateur
M. Carl Gunter examinateur
M. Robert Harper rapporteur
M. Francesco Zappa Nardelli directeur

2

3

Résumé : Les protocoles de sécurité enregistrent souvent des données disponibles lors de
leurs exécutions dans un journal pour une éventuelle analyse a posteriori, aussi appelée audit.
En pratique, les procédures d’audit restent souvent informelles, et le choix du contenu des
journaux est laissé au bon sens du programmeur. Cette thèse a pour but la formalisation et la
vérification des propriétés attendues des journaux d’audit.

D’abord, nous nous intéressons à l’utilisation des journaux par les protocoles de sécurité dits
optimistes qui, contrairement aux protocoles classiques, reposent sur le contenu des journaux
pour remettre certaines vérifications de sécurité à la fin de leur exécution. Nous faisons une
étude formelle de deux schémas optimistes : la mise en gage de valeur et le porte-monnaie
électronique. En appliquant les techniques issues des langages de processus, nous montrons que
les informations enregistrées par leurs implémentations suffisent pour détecter toute tentative
de tricherie de participants.

Ensuite nous définissons l’auditabilité comme la capacité d’un protocole de collecter as-
sez de preuves pour convaincre une procédure d’audit préétablie (juge). Nous proposons une
méthode basée sur les types avec des raffinements logiques, pour vérifier l’auditabilité, et nous
l’implémentons dans une extension d’un typeur existant. Nous montrons que la vérification de
l’auditabilité se réduit à une vérificationpar le typage. Nous implémentons également un support
logique des pré- et post-conditions génériques pour améliorer le typage modulaire des fonctions
d’ordre supérieur.

Mots clés : Journal d’audit, propriétés de sécurité, protocole cryptographique, système de
types.

Abstract: Security protocols often log some data available at runtime for an eventual a pos-
teriori analysis, called audit. In practice, audit procedures remain informal, and the choice
of log contents is left to the programmer’s common sense. The goal of this dissertation is to
formalize and verify the properties expected from audit logs.

First we consider the use of logs in so called optimistic security protocols which, as opposed
to classic security protocols, rely on the logs to postpone certain security checks until the
end of execution. We formally study two optimistic schemes: value commitment scheme and
offline e-cash; using process languages techniques, we prove that the information logged by their
implementations suffices to detect the cheat of participants, if any.

Then we define auditability as the ability of a protocol to collect enough evidence to convince
an audit procedure (judge). We propose a method based on types with logical refinements to
verify auditability, and implement it as an extension to an existing typechecker. We show
that verifying auditability boils down to typechecking the protocol implementation. We also
implement logical support for generic pre- and post-conditions to enhance modular typechecking
of higher-order functions.

Keywords: Audit logs, security properties, cryptographic protocols, type system.

Ces travaux ont été menés au Centre de Recherche Commun INRIA - Microsoft Research –
Parc Orsay Université 28, rue Jean Rostand 91893 Orsay.

4

Acknowledgements

I’m deeply grateful to Francesco Zappa Nardelli, Cédric Fournet, and Jean-Jacques Lévy
for their guidance, coaching, and friendship. In particular, I owe a lot to Cédric who has been
a great, though unofficial, supervisor.

For the last part of the thesis I had the pleasure of working with Karthikeyan Bhargavan.
I’m also grateful to Karthik and Cédric for offering me the opportunity of internship at Mi-
crosoft Research in Cambridge. I also enjoyed working with Pedro Adão during his visits to
the Microsoft Research - INRIA Joint Centre. I’d like to thank all the colleagues, and Martine
particularly for her fabulous assistance.

I’d like to thank the members of my jury, and to Gilles Barthe and Robert Harper in
particular for accepting to review this manuscript.

Many thanks to my parents and friends. Thanks to Gabriel for being cute. The biggest
thanks go to Alexis ♥. Without him I would have neither got the idea to start a PhD nor had
the courage to finish it. And I would have definitely lost more battles against LATEX, which is
nevertheless a brilliant tool.

Contents

1 A formal approach to audit logs 9

2 Preliminaries 13

2.1 Security protocols: notation and goals . 13

2.2 The protocols used in the following chapters . 14

2.2.1 Simple message authentication . 15

2.2.2 Rock-Paper-Scissors . 15

2.2.3 Multi-party game . 15

2.3 Applied pi calculus . 16

2.4 Refinement types for ML . 18

2.4.1 Syntax and operational semantics of the language 18

2.4.2 Refinement type system . 20

2.4.3 Type safety . 22

2.4.4 Pre-defined F7 libraries . 22

Crypto library . 23

Principals library . 25

2.4.5 F7 implementation . 26

3 The use of logs within optimistic protocols 27

3.1 A cautiously optimistic approach to security . 27

3.2 Value commitment . 28

3.2.1 A language with value commitment . 28

3.2.2 Example: an online game . 29

3.2.3 Distributed cryptography implementation 31

3.2.4 Model and translation of environment interactions 34

3.2.5 Correctness results . 38

3.3 Offline e-cash . 39

3.3.1 A language for offline e-cash . 41

3.3.2 Properties of the language . 43

3.3.3 Log-based implementation . 45

3.3.4 Model and translation of environment interactions 47

3.3.5 Correctness results . 49

3.4 Related work on the use of audit logs . 49

3.4.1 Online games . 50

3.4.2 Multi-party protocols . 51

3.4.3 Implementations of secure audit logs . 52

3.5 Conclusions and future work . 53

5

6 CONTENTS

4 A general definition of auditability 55

4.1 A language-based approach to auditing . 55

4.2 Modelling security protocols in F7 . 56

4.3 A definition of auditability . 58

4.4 Auditability, illustrated . 60

4.4.1 Naive (non-auditable) mail . 60

4.4.2 Rock-Paper-Scissors . 61

4.4.3 Value commitment . 62

4.5 Discussion and related work on auditability . 63

5 Automatic verification of auditability 67

5.1 Static analysis of auditability . 67

5.2 Application: a protocol for n-player games . 70

5.3 Related work on checking audit-related properties 74

6 Using pre- and post-conditions to verify auditability 77

6.1 Towards more flexibility for F7 . 77

6.2 Refinements for pre- and post-conditions . 78

6.2.1 Event-based semantics . 79

6.2.2 Macro-expansion semantics . 80

6.2.3 Subtyping-based semantics . 80

6.3 Reusable typed interface for lists . 82

6.4 Compact types for audit . 84

6.5 Pre- and post-conditions for protocol implementations 85

6.5.1 XML digital signatures . 85

6.5.2 X.509 certification paths . 86

6.6 Related work . 87

6.7 Conclusions and future work . 87

Bibliography 89

A Preliminaries (complements) 95

A.1 Applied pi calculus . 95

A.1.1 Reduction semantics . 95

A.1.2 Structural equivalence . 95

A.1.3 Labelled semantics . 95

A.2 RCF . 97

A.2.1 Evaluation . 97

A.2.2 Subtyping . 97

A.2.3 Typechecking . 98

B Value commitment 101

B.1 Semantics of the source language . 101

B.1.1 Equational theory . 101

B.1.2 Structural equivalence . 101

B.1.3 Reduction semantics . 102

B.1.4 Ordering capabilities . 102

B.1.5 State transitions . 103

B.1.6 Labelled semantics . 103

B.2 Proofs . 104

B.2.1 Preliminary lemmas . 104

B.2.2 Functional adequacy . 116

CONTENTS 7

B.2.3 Security . 121

C Offline e-cash 129
C.1 Semantics of source language . 129
C.2 Detectability . 130

D Flexible pre- and post-conditions for F7 131

E Sample code 137
E.1 Multi-party protocol: client code . 137
E.2 List Library Interface . 138

8 CONTENTS

Chapter 1

A formal approach to audit logs

Most applications write audit logs. We are used to system logs: large text files where
the operating system records who-what-where-when about all the notable events that occurred
during each session. When something bad happens, the administrator just has to look at the
logs to identify the problem and understand its causes. In practice, the amount of data logged
is huge, most of the stored data is irrelevant for a given problem, and the success of the analysis
of the logs is determined by the administrator’s forensic skills.

System logs are an example of audit logs with weak application properties; they only out-
line the sequencing of the system events, provided that the superuser who generated them is
trusted. Audit logs can also be used to enforce stronger security properties: in this case more
complex cryptographically protected data is stored and can be used as out-of-context proofs.
For instance, servers of web applications may log all authenticated connections and the history
of every transaction with the clients. Server and clients may mistrust each other, and the logs
should contain reliable cryptographic evidence for each party.

Audit logs are usually used as an extra protection mechanism, along with other classic
runtime mechanisms to enforce the security goals. For some applications though, relying on logs
is the most efficient, or even the only available protection mechanism. Some runtime security
checks can then be discarded and the data relevant for these checks can be securely recorded in
a log: the security checks can be performed a posteriori. We call this approach optimistic. This
is especially helpful in domains where cheating and security attacks are rare: the guarantee
that the attack will be discovered and punished is reasonably strong and eliminates the cost of
continuously checking the good behaviour of all parties. The same principle applies as for the
penal laws: crimes are only investigated when discovered. Because of the punishment, incentives
for malicious behaviour fade away. The optimistic approach obviously does not apply to critical
applications (e.g. military applications). But they apply particularly well when quick decisions
benefit the application while introducing little additional risk. Automatic business applications
earn money by reacting very quickly to uncertain information about the stock market, in cases
where the risk of money loss is limited compared to the eventual money gain. For medical
applications, in case of an emergency, the usual access control mechanisms should be bypassed
to access the health record of the patient immediately; unauthorized access is a minor risk when
compared to the threat to the patient’s health, and must be recorded anyway [Becker and Sewell,
2004, Barth et al., 2007]. In online network gaming applications responsiveness is crucial for
the game; secure logging may be used to double-check the consistency of the adversarial moves
a posteriori to avoid a slowdown during the game [Jha et al., 2007].

In this work Audit logs are recognized as a valid security enforcement mechanism even if their
analysis remains hard. A large body of studies covers forensic analysis and intrusion detection
techniques (see the RAID or DFRWS conference series, for example). The development of these
analyses is vital, as they can be parameterized by patterns of attacks or properties and thus can

9

10 CHAPTER 1. A FORMAL APPROACH TO AUDIT LOGS

exploit at best the available logged data for multiple security goals. However, some applications,
including but not limited to optimistic protocols, rely on audit logs only to enable checking a
given, pre-established security goal. We advocate that in these cases a formal approach can
guide the programmer to select the data that must be logged, and can guarantee that the
logged evidence will always suffice to check the given security goal. This work is thus focused
on the following problem:

for a given application and security goal, which data should be logged?

Apart from general recommendations such as “an audit trail should include sufficient informa-
tion to establish what events occurred and who (or what) caused them” [NIST, 1996, ISO/IEC,
2004] and efficient implementation techniques, we are not aware of any formal studies that
characterize and verify the security properties achieved by protocols relying on logs.

Contributions In this work we explore two aspects of the problem sketched above. First
we study how process language techniques can be used to prove that a given protocol logs
enough information to ensure that cheating can be detected and that cheaters can be identified
a posteriori. Second, we focus on programs written in a dialect of ML and we propose a type
discipline based on dependent types so that verifying whether enough data is logged boils down
to typechecking. In more details, our contributions are as follows:

Optimistic security We investigate the properties of a sample optimistic scheme, called
value commitment. Value commitment enables a principal to commit to a value without reveal-
ing it, while being able to prove to the other principals that he really committed to a particular
value. The value commitment scheme is a building block of many optimistic protocols, such
as sealed bids auctions, and protocols using the cut-and-choose schema [Chaum et al., 2004,
Chaum, 2004, Neff, 2001]. We design an extension of the applied pi calculus [Abadi and Four-
net, 2001] which supports committable cells: these are write-once cells equipped with a blinded
receipt of commitment. This receipt can be shown to other principals to prove the commit-
ment and does not reveal the committed value. The semantics of committable cells builds in
the expected properties of binding (the principal did commit to a value, the principal cannot
change the value he committed to) and hiding (the value is not revealed by the receipt). Value
commitment is typically implemented using cryptographic hash functions. We compile commit-
table cells to standard cryptographic constructs of the applied pi calculusand store them in a
log. We establish a full abstraction result between the two semantics, thus showing that the
expected security properties are enforced by our use of cryptography and logs. More than that,
this shows that the implementation guarantees that any cheating (e.g. multiple commitments
to the same cell) will be detected, and the logged evidence will allow to blame the guilty party.

We call this property optimistic security : either the security goals are achieved or there is
reliable evidence such that misbehaving principals can be blamed. In general, principled use of
logs carefully generated for a particular purpose – and so designed to be given as input to a
particular decision (audit) procedure – makes the application auditable for this procedure, and
for the corresponding application level property.

We apply a similar methodology to study an existing implementation of an offline e-cash
protocol [Camenisch et al., 2005]. This implementation is cryptographically more sophisticated
than the one we designed for value commitment. This time we extract an idealized model that
by construction enjoys the expected security properties. Again, we establish a full abstraction
result between the idealized semantics and the symbolic protocol implementation, proving that
it satisfies optimistic security.

These two test cases show that the approach based on process languages can then be used
both to design a protocol implementation (value commitment) and to formalize the protocol

11

abstract behaviour (ecash). Also they show that optimistic security is a useful and precise
property enforced by optimistic protocols.

Verification of auditability Although the pi calculus is a convenient and useful tool for
reasoning about protocols, real life protocol implementations are written in full-fledged pro-
gramming languages. We aim to define and verify the properties related to audit logs for
realistic protocol implementations. Operating at the level of the protocol source code ensures
that both design and implementation flaws will be caught, and also facilitates the adoption of
verification tools by programmers. We choose to study protocol implementations written in
F7 [Bengtson et al., 2008b, Bhargavan et al., 2010a], a dialect of ML with logical refinements.

First, we isolate and propose a formal definition of auditability, which we believe is the most
useful and the most general security property provided by audit logs. Second, we propose a
method for automated verification of auditability using the F7 types.

General definition of auditability Suppose that we are given a protocol implementation with
some specific type annotations (for instance when accepting a message or allocating a key,
the corresponding event is recorded as a logical assumption and as a refinement of the
types of all related values).

We propose to annotate the code with audit goals: the programmer may claim at some
points in the program (that we call audit points) to have collected evidence that, if logged
and analysed a posteriori allows to “pass” the audit – that is, to convince the auditor
(or judge) of this goal. The role of the judge is crucial: intuitively, his decision procedure
specifies the rules of audit; all parties concerned by audit must know and accept the judge
in advance, in particular to acknowledge his trust assumptions. We define auditability of
a program for a property as the ability of this program to convince the judge specialized
for this property at every audit point using the evidence collected at that point. For
instance, the implementation of the value commitment scheme is auditable for the property
“Whenever a principal is blamed, he attempted a multiple commitment of a cell”.

Checking auditability We rely on F7, an SMT-based typechecker developed for the modular,
automatic verification of cryptographic protocols. The main idea for checking auditability
is to typecheck the source code of the judge and that of the program which embeds the
audit points and verify that the type of the judge function matches the type of the evidence
at every audit point. We illustrate this typing discipline by statically checking auditability
of our examples, including a multi-party protocol.

Flexible pre- and post-conditions F7 allows to verify protocols that use recursive data structures
(for instance, lists in our multi-party protocol example). However this entails replicating
higher-order library functions and annotating each instance with its own logical pre- and
post- conditions. Instead, we equip higher-order functions with precise, yet reusable types
that can refer to the pre- and post-conditions of their functional arguments, using generic
logical predicates. We implement our method by extending the F7 typechecker with
automated support for these predicates. Experimentally this approach allows to reduce
the amount of type annotations for verifying auditability of our examples. As an additional
benefit, it allows to express the typing requirement that the post-condition of the audit
procedure must match the pre-condition at all audit points.

Structure of the document In Chapter 2 we recall the research work we are building on
and we define our main notations. In Chapter 3 we formally study the use of audit logs in
the implementations of optimistic protocols: we design and study a formal implementation of
value commitment, then we apply the same technique to study an existing implementation of
electronic cash. In Chapter 4 we propose a general definition of auditability and illustrate its use
for our case studies. In Chapter 5 we present a method for automatically checking auditability

12 CHAPTER 1. A FORMAL APPROACH TO AUDIT LOGS

of program code annotated with logical formulas using the F7 typechecker. In Chapter 6 we
extend the F7 typechecker with generic pre- and post-conditions and use this extension to make
the annotations more compact and modular.

Related works are discussed through the document. Conclusions and possible future work
are discussed at the end of Chapters 3 and 6. The source code for all our protocols as well as
the instructions for typechecking it, are available online [cod].

Provenance of the material This dissertation is partially based on published material.
The case study on optimistic implementation of value commitment has been published in

the proceedings of the 17th European Symposium on Programming [Fournet et al., 2008] and
presented in April 2008 in Budapest, Hungary. A very preliminary formalization of e-cash has
been presented in the 4th Workshop on Formal and Computational Cryptography [Adão et al.,
2008] in June 2008 in Pittsburgh, USA. An earlier version of the work on general definition of
auditability has been published in the proceedings of the 14th European Symposium on Research
in Computer Security [Guts et al., 2009] and presented in September 2009 in Saint-Malo, France;
this dissertation uses a more recent version of the F7 verification method. The work on the use
of pre- and post-conditions for security typechecking will appear in the proceedings of the 8th
Asian Symposium on Programming Languages and Systems [Bhargavan et al., 2010b].

Chapter 2

Preliminaries

In this chapter we introduce the notations we use in this thesis (Section 2.1), we recall and
adapt some research works we build on (Sections 2.3 and 2.4), and, perhaps more interestingly,
we describe once for all several protocols we use all along this thesis (Section 2.2).

2.1 Security protocols: notation and goals

A protocol is a set of rules on message exchange aiming to achieve security goals between
two or more partners.

To describe protocols we adopt notations common in the literature. Protocol participants
(also called principals, agents, parties, etc.) are denoted with capitals A,B, . . . ,X. The trans-
mission of message m from entity X to participant Y is denoted X → Y : m. We use two sets
of notations for messages. To specify a particular implementation of a cryptographic protocol,
we use the common “concrete” syntax:

m ::= Messages
N nonce (fresh name)
h(m) a collision resistant one-way hash function
{ }k encryption with key k
m1|m2 concatenation

k ::= Keys
kXY symmetric key shared between X and Y
pkX public key for signature verification and encryption for X
skX private key of entity X, used for signing and decryption

In this thesis we often assume the existence of a trusted public key infrastructure (PKI) which
binds public keys to the identities of the participants.

In addition, to abstract away the concrete cryptographic implementation of a message and
highlight its security properties, we use an “abstract” syntax:

m ::=
N nonce (fresh name)
m1|m2 concatenation
authentic(m,X) message m, authenticated by principal X
secret(m,X) message m, only readable by principal X
blinded(m) commitment to later reveal message m

13

14 CHAPTER 2. PRELIMINARIES

Security properties Below we informally discuss different security goals of protocols.
Secrecy (also called confidentiality) of data is about restricting read access to this data. For

example, the passphrase typed by the user to access some web server should only be received
by the server, and in particular remain unknown to the attacker.

Anonymity guarantees that the identity of a principal is not revealed by the messages ex-
changed during the protocol. Privacy is a related property: for example, one may not want his
browsing history on Youtube to be linked to his identity to preserve his privacy.

Integrity of data is about restricting write access to this data: only certain principals can
modify the data. For example, when downloading a file from a distant server, you may want to
be sure that what you receive is the correct content of the file, and that no transmission errors
occurred.

Authentication means that the data is known to be related (issued, received) from a par-
ticular principal. For instance, when logging to your webmail, you type your password to
authenticate yourself and your actions.

Other properties may be targeted as protocol goals: fairness (all partners enjoy the same
guarantees), non-repudiation (inability to deny an action), verifiability (the ability of one or
more principals to verify the outcome of the protocol) and others.

This thesis studies another security property called auditability. We will introduce and define
it in Chapter 4.

Example 2.1.1. Suppose that student Alice sends her homework essai.txt to professor Bob
for grading. Alice trusts the professor but has no illusions about the public channel used for
submissions: its contents can be read and modified by anyone from the university campus.

To protect her work from being stolen, she encrypts it with the public key of the professor,
so that he is the only one to be able to decrypt it using his private key (secrecy). To convince
the professor that she is the sender of the homework (authentication) and that the homework
has not been corrupted (integrity), she encloses the digital signature of the message using her
private key.

Using our concrete notation, we write the homework mini-protocol as

Alice → Bob : {essai.txt}pkBob | {{essai.txt}pkBob}skAlice

In its abstract form, the protocol is written as

Alice → Bob : authentic(secret(essai.txt, Bob), Alice)

Attacks The goals of the protocols must be achieved even when the protocol runs in the
presence of hostile parties, attackers. We consider the active attacker [Dolev and Yao, 1983]
who can eavesdrop, modify, or substitute, any message exchanged on the network. The attacker
can also initiate a protocol session and actively participate in a session, using his own credentials
or the credentials of the parties he corrupted.

Some kinds of the attacks have been extensively studied and described in the literature,
for example replay attacks or attacks by reflexion. Abadi and Needham [1996] describe the
practical solutions which offer a shield against such attacks. Our sample protocols may not be
protected against all known attacks; instead, we focus on implementing the protections that
support our property of interest, namely auditability.

2.2 The protocols used in the following chapters

In this section we informally describe several protocols that will serve as examples in this
thesis. We are going to experiment with their implementations, and reason about their formal
properties in the following chapters.

2.2. THE PROTOCOLS USED IN THE FOLLOWING CHAPTERS 15

2.2.1 Simple message authentication

Consider a simple protocol where a client Alice sends an authenticated mail to a server Bob.

Alice → Bob : authentic(message,Alice)

To prove her identity, Alice produces some evidence, symbolically represented as the term
authentic(message,Alice), that Bob can check. We implement this evidence in several ways
in the following chapters. For example, in Section 4 authentic is implemented by including the
digital signature of the message with Alice’s private key: Bob can verify it using Alice’s public
key.

Intuitively, this protocol guarantees integrity and authenticity of the message. Bob accepts
the message if and only if the verification of the evidence against the message succeeds. He
relies on the unforgeability of the received evidence: only Alice could have issued it, so she
indeed intended to send the message, and the message was not modified by the environment.

2.2.2 Rock-Paper-Scissors

A server Charlie organizes a session of Rock-Paper-Scissors between Alice and Bob. Charlie
is trusted by Alice and Bob in the following respects: Charlie does not help any of the players to
choose a move, and Charlie does not to tamper with the received moves. The function winning
returns Rock for Scissors, Scissors for Paper, and Paper for Rock, as expected.

Alice → Charlie : authentic(mA,Alice)

Bob → Charlie : authentic(mB,Bob)

Charlie → Alice,Bob : winning(mA,mB) | authentic(mA,Alice) | authentic(mB,Bob)

Without the trust assumption, Charlie could obviously help Bob by forwarding Alice’s move to
him so that he can choose the winning move. Note that no secrecy is provided, so the adversary
can eavesdrop Alice’s message and still help Bob.

The main goals of this protocol are integrity and authentication of the players’ moves.

2.2.3 Multi-party game

The game is run by a server Server between n players Player1, . . .Playern. Unlike in the
previous example, the server is untrusted and may collude with other dishonest players. The
game is played in one turn, with all players revealing their moves simultaneously. For simplicity,
we assume that the game is symmetric between all players. The protocol participants are willing
to cooperate but with minimal trust assumptions between them; however, it is deemed sufficient
to detect any dishonest principal at the end of the game. They also want to reveal as little
information as possible; in particular they do not reveal their moves until everyone has played
(as e.g. in the Lockstep protocol [Baughman and Levine, 2001]).

At the end of the game, depending on the moves for all players, one player wins, and
expects to be recognized as the winner. The game may be instantiated to Rock-Paper-Scissors,
online auctions (as in our protocol description), leader elections, and similar partial-information
protocols [Shamir et al., 1981, Castellà-Roca et al., 2003, Chaum et al., 2004].

The protocol has three exchange rounds between the server and each player:

(1) the server sets up the game (in particular generating a fresh game identifier id), distributes
the details to the players, and collects their sealed moves;

(2) the server distributes all the players’ sealed moves and collects their actual moves;

16 CHAPTER 2. PRELIMINARIES

(3) the server distributes the result of the game (the function winning returns the winning
move for a given list of moves according to the game rules); as a variant of the protocol,
the server can also distribute all the players’ moves.

Server → Playeri : id

P layeri → Server : authentic(blind(id |mi), P layeri)

Server → Playeri : authentic((id, blind(id |mi)i∈1..n), Server)

Playeri → Server : mi

Server → Playeri : winning(m1..n)

The goals of this protocol include integrity and authentication of the players’ moves, but
also integrity and authentication of the server’s commitment at the end of the first round. In
addition, the secrecy of the players’ moves is maintained until the end of the second round
when they intentionally disclose their moves. Note that an instance of the game with n = 2
implements the Rock-Paper-Scissors protocol providing additional security properties.

2.3 Applied pi calculus

In the first part of this thesis we formalize protocols using the applied pi calculus. We refer
to Abadi and Fournet [2001] for a general presentation of its semantics. Below we briefly recall
its syntax and semantics.

The applied pi calculus is a process language parameterized by an equational theory on
terms, which provides flexible support for modelling symbolic cryptographic primitives and
data structures. It is based on Milner’s pi calculus [Milner, 1999].

M , V ::=
| u
| M + M ′

| func(M̃)

P , Q , R ::=
| 0
| P1 |P2

| new∗ c .P
| u?(M).P
| u!〈M 〉.P
| if M = M ′ thenP elseP ′

| replP

A, S ::=
| p[P]
| A1 | A2

| ν u .A
| {M /x}

Figure 2.1: Terms, processes, and systems in applied pi calculus

Syntax The grammar for terms (M,V), processes (P), and systems (A) is given in Figure 2.1.

Terms contain names, variables (denoted x, y, . . .) and function applications respecting the
signature. Among names we distinguish communications channels ranged over by c, nonces
denoted l, s, n, . . ., and principals denoted p, a, e, Alice,Bob. The metavariable u ranges over
names and variables.

The set of terms is parameterized with a signature: a set of function symbols with arities,
for instance +/2,+1/1. A signature is equipped with an equivalence relation for terms, called
equational theory, often generated by a set of rewrite rules. We assume that functions include
at least a pairing function, denoted +, with associated projections +1,+2 and equations +i(x1+

2.3. APPLIED PI CALCULUS 17

x2) = xi for i = 1, 2. Our examples will introduce additional data structures and we also use
integer constants.

We rely on standard symbolic cryptographic primitives:
– public-key signature and encryption mechanisms with constructors pk/1, sk/1, verify/3,

sign/2,ok/0, dec/2, enc/2. The functions sk(m) and pk(m) generate a pair of secret/public
keys from a nonce m. The function verify(m , s , k) models verification of a signature s
against a message m using the public key k. The function sign(m, k) generates a signature
for a message m using the secret key k. The constant ok allows to test the result of
signature verification. The functions dec(m, k) (resp. enc(m, k) model decryption and
encryption of a message m using with the private (resp. public) key k. These constructors
satisfy the equations:

verify(v , sign(v , sk(m)) , pk(m)) = ok

dec(enc(v , pk(m)) , sk(m)) = v

– hash function, denoted h/1, with no equations. Not providing an equational axiom is
meaningful: the hash function is assumed to be one-way only. The term h(M) can be
constructed from the term M but the term M cannot be extracted from its hash.

A concurrent system is modelled as composition of processes locally run by principals. Plain
processes, usually called simply processes include parallel composition, replication, generating
a fresh name, output of a term (and not just a name as in pi calculus), input on channel,
conditional construct where the condition is evaluated according to the equational theory. Con-
trarily to the original applied pi calculus, each process P runs under the control of a principal
p, denoted p[P].

Extended processes, also called systems, include processes, parallel composition of systems
and name and variable restrictions and active substitutions: {M/x} replaces the variable x with
the term M in all parallel processes as far as the restriction of x allows. So νx.({M/x}|P)
corresponds exactly to let x = M inP . By replacing all processes p[P] in an extended process
A with the null process 0, we obtain its frame φ(A) that approximates the static information
exposed by A to the environment through the skeleton of its restrictions and active substitutions.
For example, the frame ν s . ν y . {h(s) / x } | { (s + s) / y } exports the variable x while the
variable y is under restriction: the environment thus knows the hash of some secret s, but not
its concatenation with itself.

We denote fv(A), fn(A), bv(A) and bn(A) the sets of free and bound variables and names
of an extended process, respectively. We abbreviate successive restrictions νu1, . . . , νun.A as
νũ.A. Tuples M1, . . . ,Mn are abbreviated as M̃ .

Alice’s and Bob’s roles from Example 2.1.1 can be modelled in applied pi calculus as shown
below, we assume that c is the public channel they use to communicate.

PAlice =c!〈enc(v , Bob) + sign(v , sk(sAlice))〉.0
PBob =c?(x).if verify(dec((+1 x) , sk(sBob)) , (+2 x) , Alice) = ok then c!〈ok〉 else 0

Alice and Bob are identified by their public keys which are exported using active substitu-
tions. Nonces sAlice are sBob are the secrets used to generate the public/secret key pair for the
participants. The roles run in the following context:

ν sAlice . ν sBob . ({pk(sAlice)/Alice} | {pk(sBob)/Bob} |)

Semantics The operational semantics of applied pi calculus is defined by structural equiv-
alence, ≡, and internal reduction relation, −→. To reason about interactions with their en-
vironment, labelled operational semantics is most convenient,

α−→ where α is an input or an
output of a term that the environment observes. The definitions of these relations are given in
Appendix A.1.

18 CHAPTER 2. PRELIMINARIES

2.4 Refinement types for ML

In Chapters 4 to 6 we study protocols implemented in a dialect of ML, called F#, where
types have been refined to support logical annotations. In this section we review the syntax
and semantics of the underlying core calculus, called RCF, and its implementation in the F7
typechecker. We refer to Bengtson et al. [2008b] for a detailed description of the calculus and to
Bhargavan et al. [2010a] for the details on the modular verification of cryptographic protocols
using F7.

2.4.1 Syntax and operational semantics of the language

RCF consists of the standard Fixpoint Calculus [Plotkin, 1985] augmented with local names,
message-passing concurrency, and with refinement types. Figure 2.2 shows the full syntax of
expressions we use in our formalization. Values, denoted by M , include unit, variables, pairs,
constructed terms, and (possibly recursive) functions. Free variables of a term M are denoted
fv(M). Expressions, denoted by A, B, and e are in A-normal form; they include a standard
functional core: values, function application, syntactic equality, pattern matching, let-bindings
for sequential composition; and some concurrent constructs: name restriction, fork, and message
sending and receiving on a channel. We use the directed parallel composition A � B; it returns
the same value as B. The other concurrency and message-passing constructs are as in the pi
calculus.

Our syntax slightly deviates from Bengtson et al.. The main difference is that we have
recursive functions, as in F7, instead of a fold constructor, and we require that function values
have fully-specified type annotations.

The concurrency and message passing constructs do not appear in source programs; they
are used to symbolically model run-time processes (e.g. the principals running a cryptographic
protocol and their adversary) and network-based communications.

Notations The source programs described in this thesis are written in a more general F#
syntax that is treated as syntactic sugar for core RCF values and expressions. General expres-
sions can be written in A-normal form by inserting let-bindings; for instance, A B

4
= let x =

A in let y = B in x y. As usual in ML, we let let f x = e stand for let f = fun x → e. We
denote with M̃ the tuple with n elements encoded as nested pairs (M1, (M2, (. . . ,Mn))).

Logical annotations For specification purposes, RCF includes constructs for assuming and
asserting first-order logic formulas. We let C range over formulas in a first-order logic that
includes predicates over values. Formulas can be assumed (denoted assume C) or asserted
(denoted assert C) by programs.

Informally, assumes are privileged expressions, recording for instance that a principal in-
tends to send a message. Conversely, assert records that a principal believes that some logical
property holds at this point. The role of assume and assert expressions is to specify, rather
than to enforce, run-time properties of a program. Concretely, all formulas are erased at run-
time after verification.

Operational semantics Formally an RCF expression represents a concurrent, message-
passing computation, which may return a value. The state of the computation can be rep-
resented as an expression in normal form S (structure) that includes (1) a multiset of formulas
that have been assumed so far; (2) a multiset of pending messages; and (3) a multiset of ex-
pressions being evaluated in parallel.

Structures and Static Safety:

L ::= {} | (let x = L in B)

2.4. REFINEMENT TYPES FOR ML 19

Figure 2.2: Syntax of RCF messages, formulas and expressions

M,N ::= Values
() unit
x variable
(M,N) pair
h M constructor
rec f : T. fun x→ e recursive function

e,A,B ::= Expressions
M value
M N function application
let x = e1 in e2 sequential composition
let (x, y) = M in e pair projection
match M with h x → e1 else e2 pattern matching (else optional)
assume C assume formula
assert C expect formula
e : T annotated expression
e1 � e2 parallel composition
(νa)e restriction, create new channel a
a!M send M on channel a
a? receive message off channel a

C ::= First-order Logic Formulas
True | False constants
M1 = M2 |M1 6= M2 comparison
P (M1, . . . ,Mn) predicate application
not C | C ∧ C | C ∨ C boolean operators
∀x.C | ∃x.C first-order quantification

S ::= (νa1) . . . (νa`)((
∏
i∈1..m

assume Ci) � (
∏
j∈1..n

cj !Mj) � (
∏
k∈1..o

Lk{ek}))

where ek is an expression apart from a let, restriction, fork, message send, or an assumption.

Let structure S be safe if and only if, for all k ∈ 1..o and C, if ek = assert C then the
formula C is deducible from the assumed formulas, denoted {C1, . . . , Cm} ` C.

The evaluation of assume C extends the current multiset of assumed formulas with C
(AV A′ denotes rewriting of A into normal form A′, see Appendix A.2.1 for more details). The
expression assert C always reduces to unit.

assume C V assume C � () (Heat Assume ())

assert C → () (Red Assert)

We say that assert C succeeds if, when it is evaluated, the formula C is deducible from the
assumed formulas. For example, the assert in the expression assume C; assert C always suc-
ceeds.

An expression is safe when all of its asserts succeed in every run.
The reduction semantics is defined in terms of a small-step relation over configurations. It

contains the usual β-reduction, pattern-matching reduction and communication reduction (see

20 CHAPTER 2. PRELIMINARIES

Figure 2.3: Syntax of RCF types

P ::= Pretypes
unit unit type
x : T1 → T2 dependent function type (scope of x is T2)
x : T1 × T2 dependent pair type (scope of x is T2)
α type variable
Σi(hi : Ti → α) algebraic datatype (sum type)
µα.P iso-recursive type (scope of α is P)

T,U, V ::= Refinement Types
(x : P){C} x of pretype P such that C (scope of x is C)

E ::= Type Environment
∅ | E,C | E, x : T

Appendix A.2.1). Our rule for β-reduction of recursive functions is the following:

(rec f : T. fun x→ A) N → A{rec f : T. fun x→ A/f}{N/x}(Red Rec Fun)

Evaluation contexts E are defined as

E ::= [] | let x=E in A| (νa : T)E |E � B |B � E]

The expression assert C succeeds if C can be logically derived from the current multiset of
assumed formulas.

2.4.2 Refinement type system

To allow static verification of the safety of RCF expressions, they are equipped with a
refinement type system. The syntax of RCF types is shown in Figure 2.3.

Types are the usual ML types refined with first-order formulas. For instance, the refinement
type v : int {v > 5} is the type of all the expressions that, if they evaluate to a value, evaluate
to an integer greater than 5. More generally, refinement types associate logical formulas with
program expressions: the type of an expression A is of the form x: P { C } where x binds the
value of A, P is a type being refined (e.g. an ordinary ML type), and C is a formula that holds
when A returns (e.g. a property of x).

Functions can also be given precise refinement types. Refinements that appear in the argu-
ments of a function specify preconditions that must hold when the function is invoked, while
the refinement of the return type specifies a postcondition that will hold when the function
returns. For instance, the dependent function type v:int →w:int {w>v}, a subtype of int → int,
represents functions that, when called with an integer v, may return only an integer greater
than v.

Difference with the standard RCF types We use a normalized version of RCF refine-
ment types obtained by stratifying them into pretypes (intuitively, plain ML types) and types
(pretypes with a refinement). We also have recursive algebraic sum types Σi(hi : Ti → α).
Datatype constructors hi can be encoded in standard RCF using inl, inr, and fold.

2.4. REFINEMENT TYPES FOR ML 21

Syntax of types Pretypes P are ML-like types extended with dependent functions, written
x : T1 → T2, and dependent pairs. To avoid an extra binder, we abbreviate x : (x : P){C} → T2

to x : P{C} → T2. A refinement type T , of the form x:P{C}, is the type of expressions that
return values M of pretype P such that the formula C[M/x] can be derived from the log of
assumed formulas. Hence, a function type can be fully written out as x:(x:P{C}) → y:P ′{C ′},
where its argument has pretype P and must satisfy the precondition C, and its return value
has pretype P ′ and is guaranteed to satisfy the postcondition C ′.

A simple erasure operation converts RCF types into valid ML types (and well-typed RCF
terms into well-typed ML terms).

Type environments and judgments RCF defines judgments for assigning types to expres-
sions and for checking whether one type is a subtype of another.

Type environments E keep track of the set of assumed formulas, and typechecking ensures
that every asserted formula logically holds in the current environment. (Since asserts may
contain quantified formulas that rely on assumes made in concurrent expressions, it is often
not possible to dynamically verify the safety of RCF expressions using run-time checks.)

The type system has the following judgments.

E ` � environment E is well-formed
E ` C formula C holds in environment E
E ` T <: T ′ T is a subtype of T ′ in environment E
E ` e : T expression e has type T in environment E

An environment is well-formed if all the variables in it are well-scoped. Note, however, that
the formulas in it do not have to be consistent. A formula holds in an environment if it can
be deduced from the formulas in the environment. A refinement type (x:P){C} is a subtype
of (x:P ′){C ′} in an environment E, P is a subtype of P ′ in E and E, x : P ′ ` C ⇒ C ′. For
instance, v : int {v > 5} is a subtype of int. The rest of the subtyping rules are straightforward
(see Appendix A.2.2 for details).

To illustrate expression typing, we recall four typing rules, those for assumes and asserts,
and those for lambda expressions and applications:

(Typ Assume)
E ` � fv(C) ⊆ dom(E)

E ` assume C : (: unit){C}

(Typ Assert)
E ` C

E ` assert C : (: unit){C}

(Typ Fun)
E ` x : T1 → T2 <: T
E, f : T, x : T1 ` e : T2

E ` rec f : T.(fun x→ e) : x : T1 → T2

(Typ App)
E `M : x : T1 → T2

E ` N : T1

E ` (M N) : T2{N/x}

An assert C statement is well-typed in a typing environment where C logically follows from
the formulas of the environment. Conversely, an assume C statement is always well- typed,
with C as a postcondition.

A recursive function has type x : T1 → T2 if this type is a subtype of its annotation T and
its body has type T2 in an environment extended for f and x. An application M N has type T2

if M has the function type type x : T1 → T2 and N has a type which is a subtype of T1. The
rest of the typing rules are given in Appendix A.2.3.

We use the following corollary of Proposition 30 (→ Preserves Types) of Bengtson et al.
[2008a].

Theorem 2.1 (Subject reduction). If A is a closed expression, E ` A : T , and A→∗ A′, then
E ` A′ : T .

Proof: By induction on the length of the derivation A →∗ A′. Proposition 30 of Bengtson
et al. [2008a] covers the base case. �

22 CHAPTER 2. PRELIMINARIES

2.4.3 Type safety

The main result of Bengtson et al. [2008b] states that if a program is well-typed, then it is
safe. Moreover, if a program is well-typed in an empty environment, then it is robustly safe, that
is, it is safe when composed with an arbitrary opponent. This theorem provides an effective
method to prove protocols correct.

More in detail, we suppose that a protocol runs in presence of an active Dolev-Yao opponent.
Opponents are modeled as arbitrary programs that contain no assumes and no asserts and
that have access to a given public interface of the protocol. In the latest version of RCF,
the code of a protocol is explicitly packaged with the imported interfaces it depends on, the
interfaces it exports to the attacker, and F7 inductive definitions and theorems, to form a refined
module.

A module X is a context of the form let x1 = A1 in . . . let xn = An in where n ≥ 0 and
the bound variables xi are distinct. We let bv(X) = {x1, . . . , xn}. (Following the ML syntax,
we omit the keyword in between top-level definitions.) Modules are independent when the sets
of predicates they define are disjoint. An interface I is a typing environment µ1, . . . , µn where
each µi is either an abstract type αi or a variable typing xi : Ti. The subtyping relation is lifted
to interfaces: when I <: I ′, each variable defined in I ′ must be given a supertype of the type
given by I.

A module X implements I in E, written E ` X I, when E ` X[(x1, . . . , xn)] : (x1 :
I(x1) ∗ . . . ∗ xn : I(xn)).

Intuitively, a refined module is a triple M = (E,X, I) where E is the imported interface, X is
the source code, and I is the exported interface of the module. More formally (after simplifying
the original definition of Bhargavan et al. [2010a]), a refined module is a triple M = (E,X, I)
such that there are closed formulas Mdef and Mthm, and a module Y where:

(1) Mdef is the set of assumptions of X, in other terms X = assume Mdef � Y ;

(2) Mthm is a set of formulas that can be deduced from Mdef (theorems);

(3) E,Mdef,Mthm ` Y I.

A refined module M1 = (E1,assume Mdef
1 � Y1, I1) composes with M2 = (E2,assume Mdef

2 �
Y2, I2) iff I1 <: E2 and Mdef

1 and Mdef
2 are independent. Their composition M1; M2 is the triple

(E1,assume (Mdef
1 ∧Mdef

2) � Y1[Y2], I2); it is also a refined module.
A refined module (∅, X, I) is robustly safe if and only if the expression X[O] is safe for every

opponent O such that I ` O : unit.

Theorem 2.2 (Robust safety by typing [Bhargavan et al., 2010a]). Every refined module
(∅, X, I) is robustly safe.

Robust safety is useful for protocol security: it states that the properties of the program
hold even when composed with an arbitrary active adversary that is given access to the public
interface of the program.

2.4.4 Pre-defined F7 libraries

F7 comes together with a bundle of pre-defined libraries designed for implementors of crypto-
graphic protocols. This section gives a brief overview of the libraries we rely on in our examples.

These libraries are designed as modules where inductive definitions express their logical
invariants. They form composable refined modules, which allow scalable and modular code
reuse and verification. Each of these modules typically has two interfaces:

– a rather abstract one, IA, to be given to the adversary,
– and a more precise, IM , one to be imported by other refined modules.

Given an imported interface E, one must show that both (E,M, IA) and (E,M, IM) are refined
modules. The libraries are trusted, so that a Dolev-Yao style symbolic implementation rather
than their F# implementation is typechecked against the typed interfaces.

2.4. REFINEMENT TYPES FOR ML 23

Libraries
– Data defines, and provides conversion functions for, such standard datatypes as string,

bytes, α list, α option. The predicate Bytes(x) inductively defines that x is an array of
bytes that exists in a protocol run. The predicate Pub records if a value is known to the
adversary; it is inductively defined for every data structure likely to be exchanged on a
public network, and it must be extended accordingly for every defined datatype. The
type of public values is type α pub = x:α {Pub(x)}, such abbreviations as type bytespub
= bytes pub are defined.

– Net defines functions for establishing and using TCP connections;

val connect: port → conn
val listen: port → conn
val send: conn → bytespub → unit
val recv: conn → bytespub

– Db defines abstract channel-based databases;
– Xml defines primitives and datatypes for manipulating XML documents;
– Crypto defines primitives for manipulating message authentication codes (MACs), public-

key signatures and encryptions (detailed below);
– Principals provides a convenient interface for dynamic management of principals: creation,

generation, storage and retrieval of keys, as well as their leakage; a key may be leaked to
model the compromise of its owner (detailed below)

The interfaces record the program invariants associated to the execution. Event predicates
record progress in a protocol, for example the existence of an array of bytes b, Bytes(b), or that
c is the result of invertible concatenation of b1 and b2, IsConcat(c,b1,b2). Other events must be
redefined by the protocol using them (like MACSays explained further).

Then, functions manipulating data structures are given pre- and post-conditions to ensure
that the caller code maintains those invariants. For instance, a pre-condition for sending a
message x is the formula Pub(x). For the concatenation function for byte arrays, and its par-
tial inverse (throwing an exception when decode fails), the programming interface for verified
protocol code is

val concat: b1:bytes → b2:bytes → c:bytes{ IsConcat(c,b1,b2)}
val iconcat: c:bytes → (b1:bytes * b2:bytes){ IsConcat(c,b1,b2) }

while the attacker interface is

val concat: bytespub → bytespub → bytespub
val iconcat: bytespub → bytespub * bytespub

If A has to send to B some compound message A → B : (m1,m2) then A will have to show
that both m1 and m2 are public, and use the following inductive rule:

∀b1,b2,c. Pub(b1) ∧Pub(b2) ∧Concat(c,b1,b2) ⇒Pub(c)

Crypto library

The F7 libraries interfaces can flexibly encode different cryptographic constructions. Unlike
the earlier version of RCF using kinds and seals to model cryptography [Bengtson et al., 2008b],
Bhargavan et al. [2010a] specifies and enforces invariants on the cryptographic structures via a
logic model embedded in the library.

Below we outline the use of the refined interface for RSA-based public-key signatures. RSA
signatures will be used as reliable evidence in Chapter 4.

The key idea is to express different cryptographic assumptions on the functions and keys
(such as unforgeability of signatures, injectivity of the payload values, compromise of principals,
etc.) as program invariants of the implementation.

24 CHAPTER 2. PRELIMINARIES

Intuitively, the refined types for public-key signature operations let us specify the matching
logical conditions between signers and verifiers. These logical conditions are used as precondi-
tions for the sign function, and as postconditions for the signature verification function. Types
are complicated by the need to take into account both compromised and uncompromised keys.

The type key is the type of keys defined by Crypto; it accounts both for keys generated by
the libraries and by the adversary. Keys can be converted to and from arrays of bytes, and can
be encrypted.

predicate type pkeypreds =
| PrivKey of key
| PubKey of key
| PubPrivKeyPair of key * key
| PrivCompKey of key

The following three functions allow to generate a private key, derive a public key out of
the private one, and leak a private key. As the private modifier indicates, none of them is
accessible to the attacker via the library interface (but can be made so through the protocol
interface). Observe that the precondition of the compromise-key function rsa keycomp requires
that all values encrypted with this key are public and that anything can be signed with this
key.

private val rsa keygen: unit → sk:key{ PrivKey(sk) }
private val rsa pub:

sk:key{ PrivKey(sk)} → k:key{PubPrivKeyPair(k,sk) }
private val rsa keycomp:

sk:key{ PrivKey(sk) ∧
(∀k,b. PubPrivKeyPair(k,sk) ∧CanAsymEncrypt(k,b) ⇒Pub(b)) ∧
(∀b. SignSays(sk,b))} →

unit { PrivCompKey(sk) }

The following two functions allow to generate signatures using a private key and verify them
using the corresponding public key. In this work we slightly modify the library so that the
verification function returns a Boolean (instead of raising an exception when the verification
fails).

val rsa sign:
sk:key → b:bytes
{(PrivKey(sk) ∧SignSays(sk,b)) ∨ (Pub(sk) ∧Pub(b))} →
s:bytes{IsSignature(s,sk,b)}

val rsa verify:
vk:key{PubKey(vk) ∨Pub(vk)} →w:bytes → s:bytes →
b:bool {b=true ⇒∀sk. PubPrivKeyPair(vk,sk) ⇒ IsSignature(s,sk,w)}

To resume, the predicates used by the Crypto interface are the following:
– PrivKey(sk) records that sk has been produced by rsa keygen
– PubKey(vk) records that some key sk has been produced by rsa keygen and that vk

has been produced by rsa pub out of sk (which is reflected by the following equational
abbreviation).

∀k. PubKey(k) ⇔∃sk. PubPrivKeyPair(k,sk)

– PubPrivKeyPair(vk,sk) records valid pairs of verification and signing keys.
– SignSays(sk,b) must be defined by the protocol that relies on the key sk as the pre-

condition for computing a signature and the post-condition when the verification of the
signature succeeds.

– IsSignature records triples (sig,k,b) for which the signature function has been called or
for which the verification under the public key paired with k succeeds; it implies either
SignSays(k,b) or Pub(k)

2.4. REFINEMENT TYPES FOR ML 25

∀s,sk,b. IsSignature(s,sk,b) ∧Bytes(s) ⇒
(SignSays(sk,b) ∧PrivKey(sk)) ∨ (Pub(sk) ∧Pub(b))

The pre-condition of rsa sign covers two cases: for a correctly generated key the plaintext
to sign must be valid, and for keys which have been compromised or generated by the opponent
the plaintext must be public. The pre-condition for the key of rsa verify is a similar disjunction.
The module also logically encodes that the produced signatures are public provided that the
signed value is public.

Principals library

Module Principals is built on top of the module Crypto to manage a dynamic population
of principals and their keys. It allows to generate, store, retrieve or dynamically leak keys
belonging to principals. We use this library to manage keys in our multi-party game protocol.
Below we briefly present the interfaces of RSA-signatures.

Type prin ranges over principal names and abbreviates public strings. A principal may
possess several keys which can be referred to by their intended usage.

An opponent is allowed to generate a fresh pair of keys for a given principal and usage, to
retrieve its public key. It can also call leakPrivateKey to obtain the secret key of the principal;
its post-condition however tracks the compromise of the principal via predicate Bad(p) which
records that all keys accessible to p may have been compromised.

val genPublicKeyPair: u:usage → a:prin → unit
private val getPublicKeyPair: u:usage → a:prin →

(pk:key * sk:key){PublicKeyPair(u,a,pk,sk)}
val getPublicKey: u:usage → a:prin →

pk:key{∃sk. PublicKeyPair(u,a,pk,sk)}
val leakPrivateKey: u:usage → a:prin →

sk:keypub{Bad(a) ∧ (∃pk. PublicKeyPair(u,a,pk,sk))}

Predicate SendFrom(a,u,s) means that the principal a intends to sign s for purpose u before
sending. The module relates all principal-level predicates (in Principals) to the key-level predi-
cates (in Crypto), for instance, PublicKeyPair to PubPrivKeyPair and SendFrom to SignSays.
Key operations as well standard signing and verification operations can thus be done at the
level of principals.

val rsa sign: u:usage → a:prin →
sk:key{PrivateKey(u,a,sk)} →
p:bytes{SendFrom(u,a,p)} →
s:bytes{IsSignature(s,sk,p) ∧ (Pub(p) ⇒Pub(s))}

val rsa verify: u:usage → a:prin →
vk:key{PublicKey(u,a,vk)} →
w:bytes → s:bytes →
t:bool {t= true ⇒ (∀sk. PublicKeyPair(u,a,vk,sk) ⇒

(SendFrom(u,a,w) ∨Bad(a)))}

Robust safety of the trusted libraries The standard library has been proved to be robustly
safe. In particular,

– the composition of Data, Net and Crypto is a refined module;
– the composition of Data, Net, Crypto, Db, and Principals is a refined module.

To show that a protocol implementation is robustly safe, we show that it is a refined module,
in most cases depending on the libraries.

26 CHAPTER 2. PRELIMINARIES

2.4.5 F7 implementation

The prototype typechecker, F7, is an implementation of the RCF type system that supports
a significant subset of F#. In particular, it supports programs that contain type- and value-
parameterized types, records, polymorphism, mutual recursion, match expressions and mutable
references, but it does not, for example, support classes or objects. The typechecker takes two
kinds of input files

– F# implementation files (e.g. file.fs) that mention only F# types; and
– F7 interfaces (e.g. file.fs7) with logical assumptions and RCF type annotations.
The typechecker then verifies whether an implementation is well-typed against its interface.

To verify the validity of logical formulas (judgement E ` C), the typechecker can call out to any
first-order logic theorem prover. It currently uses a leading SMT solver, Z3, to discharge the
proof obligations. First-order logic validity is undecidable, so Z3 may fail to prove or disprove
some formulas. In these cases, additional assumptions (with semi-automated proofs) are needed
to verify the program.

Chapter 3

The use of logs within optimistic
protocols

3.1 A cautiously optimistic approach to security

Mutual distrust in distributed computing makes enforcing system-wide security assurances
particularly challenging. Common protocols perform an important number of mandatory run-
time checks and allow only compliant computations to progress: in session-establishment pro-
tocols, for instance, a strong security invariant is usually enforced at every step of the run
of the protocol. These runtime checks have a cost, in terms of cryptographic and networking
operations; they may also conflict with other goals of the protocol, such as confidentiality.

A different approach, which we call optimistic, presumes instead that all involved principals
are honest and well-behaved, and thus omits some runtime checks. Traces of protocol runs are
stored in a secure log and can be used a posteriori to verify the compliance of each principal
to its role: principals who attempt non-compliant actions will be blamed using the logged
evidence. The security invariant is weaker than those achieved by more conservative protocols,
but adequate for many non-critical applications.

Definition 3.1.1 (Optimistic protocol). We say that a protocol is optimistic if its correctness
and security rely on logging and auditing mechanisms as well as on the runtime checks.

An optimistic protocol run produces a log, and the only way to assess the outcome of the
protocol (whether the semantics has been followed or not) is to audit (analyse) the log. To
validate the design and verify the properties of such protocols, it seems crucial to answer the
following questions:

– which data should be logged?
– how this data should be analysed to validate the security goals of the protocol ?
To the best of our knowledge, there is no complete and comprehensive formal study on the

role of logs in optimistic protocols. In this chapter, we formally answer the questions above for
two optimistic protocols:

– value commitment which allows to commit to a hidden value and reveal it later; our main
property of interest is integrity: the committed value cannot be seamlessly changed after
commitment;

– offline e-cash which allows to withdraw a digital coin and anonymously spend it; here
again a coin is “committed” to the identity of the merchant when it is spent, and should
not be spent more than once; this property must be carefully balanced to preserve the
spender’s anonymity.

These two schemas enjoy a similar “write-only” integrity property. The e-cash scheme can be
seen as a richer extension of value commitment since it has more involved properties. To study
them, we develop process algebra techniques, namely the applied pi calculus (see Section 2.3).

27

28 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

We first model the “ideal” semantics of these protocols, desired in a setting with no corrupted
participants. Then we present a formal cryptographic implementation of this abstract semantics
using audit logs, and show that this implementation is sound and safe unless some participant
is cheating. If a participant cheats cheating, then we show that it can be discovered and blamed
using the logged evidence records).

3.2 Value commitment

Protocols inherently relying on logs to establish their security properties are often based
on a commitment scheme. A principal commits to a value kept hidden; other principals of a
system cannot read this value, but have a procedure to detect any change to the value after
the commitment. Distributed coin flipping is a simple protocol that illustrates commitment:
suppose that A and B are not physically at the same place and want to toss a coin. Both A
and B flip their own coin, exchange commitments on their results, then reveal and compare
these results; A wins the toss if the two results are the same. For fairness, A’s commitment
should neither reveal any information to B, nor enable A to change her committed result after
receiving B’s.

Commitment is a building block for many protocols such as mental poker [Castellà-Roca
et al., 2003], sealed bid auctions, e-voting [Chaum et al., 2004, Chaum, 2004], and online
games [Jha et al., 2007]. For instance, mental poker relies on commitment to build a fair
shuffling of the deck, then gradually reveal cards as the game proceeds. At the end of the game,
the deck permutations used by each player can be revealed for auditing purposes.

In this section, we formally show which data should be logged for the commitment scheme.
We extend the applied pi calculus with commitment datatypes and primitives, and we illustrate
this extension by programming an online game. To abstract away from the possible misbe-
haviors of the environment, we propose a trustful and strong operational semantics for our
commitment primitives. We show that our language can be compiled to the applied pi calculus,
using standard cryptographic primitives, with adequate protection against an arbitrary, possi-
bly hostile environment. We obtain an important security property stating that, for any source
systems, our distributed implementation either respects the semantics of commitments or, using
information stored in the logs, detects (and proves) cheating by a hostile environment.

3.2.1 A language with value commitment

To express the value commitment scheme, we extend an instance of applied pi with com-
mittable cells. Our extensions to the syntax of the applied pi calculus (Figure 2.1) are reported
in Figure 3.2.1.

Figure 3.1: Syntax of the applied pi calculus extended with committable cells

M , V ::=
| . . .
| u.Idu
| u.Idc(p)
| u.Rd(p M)

P ::=
| . . .
| newloc (x , y).P
| commitM u (x).P

A, E , T ::=
| . . .
| u.(p)
| u.(p M)

Committable cells and capabilities A cell is a memory location owned by a principal who
can, once, commit its content to a value of its choice. In addition, the owner can pass capabilities
to other principals, thereby granting these principals partial read access to the cell.

Our language features three kinds of capabilities. The read capability l .Rd (p M) is created
by the owner p of the location l when it commits to a value M . Any principal can use a

3.2. VALUE COMMITMENT 29

read capability to read the content of the location associated to the capability. The identity
capabilities instead partially disclose the state of a cell without actually revealing the value
possibly committed. So the committed id capability l . Idc (p) proves that the location l is
committed and reveals the owner p of the location. The uncommitted id capability l . Idu just
asserts the identity l of the location.

The language of terms is sorted: we distinguish marshallable values, that include all the
terms except location and channel names, and committable values, that include all marshallable
values except those that mention committed id and read capabilities.

The state of each committable cell is represented by a process: l .(p) denotes an uncommitted
cell named l owned by p; l .(p M) denotes the same cell once it has been committed to the
committable value M . Two new kinds of processes manipulate cells. The newloc process
creates a fresh, uncommitted location and binds both its unique identifier l (from L) and its
uncommitted capability in its continuation:

a[newloc (x , y).P] −→ ν l . (l .(a) | a[P{l/x}{l . Idu/y}])

where l is fresh for P . The unique identifier l can then be used to commit an uncommitted cell
to some committable value M :

l .(a) | a[commitM l (x).P] −→ l .(a M) | a[P{l .Rd (a M)/x}]

The commit process yields a read capability for the newly-committed cell. The sort system
does not allow to communicate or store in another location the cell name l: hence, only the
principal that created the cell can commit a value into it. The abbreviation newcommit creates
a new committed location (where x′, x′′ are fresh for P):

p[newcommitM (x).P]
def
= p[newloc (x ′, x ′′).commitM x ′ (x).P]

Capabilities can be communicated over channels; they can also be manipulated using special
functions, according to the equational theory below.

read(x .Rd (p v)) = v get idc(x .Rd (p v)) = x . Idc (p)

get idu(x . Idc (p)) = x . Idu get prin(x . Idc (p)) = p

is idu(x . Idu) = ok is idc(x . Idc (p)) = ok is rd(x .Rd (p v)) = ok

The read function yields the value from read capabilities. Since the read capability is generated
when committing the cell, the semantics of the source language guarantees that all reads for a
given cell always return the same value. The get prin function yields the principal that owns the
cell from committed capabilities. (We could also provide get prin from uncommitted capabilities,
at some additional cost in the cryptographic implementation.) The get idu and get idc functions
downgrade capabilities, yielding a more restrictive capability for the same cell. Hence, get idu
yields an uncommitted capability, which can be used only to identify the cell, whereas get idc
takes a read capability and hides its committed value. The language finally has functions that
support dynamic typechecking of capabilities. In particular, is idc(x) = ok or is rd(x) = ok
implies that the cell associated with x is committed.

Alternatively, commitment is modelled as standard symmetric encryption by Kremer and
Ryan [2005] as part of analysis of an electronic protocol in applied pi calculus. In their work,
committed values enjoy secrecy before they are opened, but they are not authenticated by their
issuer.

3.2.2 Example: an online game

We can easily code the multi-party game protocol of Section 2.2.3 using committable cells.
The blinded authentic messages correspond to committed id capabilities, and the non-blinded
authentic messages correspond to read capabilities of the cells with the corresponding content.

30 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

The server a0 uses channel ci to communicate with player ai for i = 1..n. We begin with
the server code, given below. For simplicity, the code does not provide any error handling—
execution stops when a test fails.

A0 = a0[newloc (l, resultid).newcommit resultid +details (challenge).(
ci !〈challenge〉.ci?(promisei).if get prin(promisei) = ai then

)
i=1..n

newcommit challenge+ ˜promise (game).(
ci !〈game〉.ci?(movei).if get idc(movei) = promisei then

)
i=1..n

commit winner(m̃ove, challenge) l (result).
(
ci !〈result〉.0

)
i=1..n

]

In round (1), the server creates an uncommitted cell l for storing the outcome of the game, and a
readable cell challenge that provides the identifier for l and the (unspecified) details of the game.
Upon receiving each player’s response, the server authenticates it as a committed capability from
that player. In round (2), the server creates a second committed cell that binds the challenge
to the received commitments from all players. Upon receiving each player’s second response,
the server correlates it as the read capability associated with their first response. In round (3),
the server has all the players’ information: it resolves the game and finally commits the cell l
to the published result of the game (which may include, for instance, selected information from
the players’ moves). We omit the code for the function winner that computes this result.

The code for the players performs symmetric operations:

Ai = ai [ci?(challenge).if get prin(get idc(challenge)) = a0 then
newcommit zi (movei).ci !〈get idc(movei)〉.
ci?(game).if valid game (game , challenge , movei) then

ci !〈movei〉.ci?(resulti).if no cheat (resulti , read(game)) thenPi]

In round (1), after receiving the challenge, each player confirms its validity, for instance by
checking that it is a genuine readable capability from a0, then it selects a move and sends back
its commitment. In round (2), after receiving all commitments, the player correlates them to
the challenge and verifies that its own commitment is recorded (using for instance valid game)
then it releases its move in clear. In round (3), the player checks the outcome of the game and
verifies a posteriori that the server followed the rules (using for instance no cheat). The tests
are defined as follows:

valid game (x1 , x2 , x3)
def
= +1(read(x1)) = x2 and get idc(x3) ∈ +2(read(x1))

no cheat (x , y)
def
= get idu(get idc(x)) = +1(y) and get idc(x) ∈ +2(y)

Guarantees offered to the players We distinguish language level guarantees, enforced by
the abstract semantics of locations, and application level guarantees, relying on high-level,
application-specific checks on top of the language semantics. For each kind of guarantees, we
also distinguish between immediate (conservative) and deferred (optimistic) enforcement. For
instance, enforcement may be deferred until the content of a cell becomes readable.

As an illustration of immediate language-level checks, committed values offer basic authen-
tication guarantees to the participants. For instance, each player has the privilege to choose its
moves, and the move is securely attributed to the player even if the communication channels ci
are unprotected; participants can also check this attribution later.

To protect application integrity, the code must perform sufficient checks before proceeding
with the game. Systematic testing of the owner identities for the received capabilities avoids
unauthorized, possibly non-accountable, participants. Some checks are immediate, e.g. testing
if two capabilities are associated to the same location; other checks that depend on the commit-
ment semantics are delayed. In the example, players are guaranteed that they all get the same
result (if any) for any given game, since they must get the same location read capability, but it

3.2. VALUE COMMITMENT 31

is up to the application code to correlate the received read capability to the initial uncommitted
capability.

At the same time, the applicative logic of our protocol guarantees that, even if the server
is willing to leak information to the other players, those players cannot get that information
before committing to their own moves.

3.2.3 Distributed cryptography implementation

The target language is an instance of applied pi, with standard (symbolic) cryptographic
primitives and data structures but without ad-hoc rules or constructs for locations.

We rely on a cryptographic hash function, denoted h, and a public-key signature mechanism
satisfying the equation verify(v , sign(v , sk(m)) , pk(m)) = ok. The functions sk(m) and pk(m)
generate a pair of secret/public keys from a nonce m. All other data constructors (including
rd, idc, idu, prin introduced below) admit projection functions funci(func(x1 , ... , xn)) = xi .

To every principal p, we associate a key pair and export its public key tagged with constructor
prin using an active substitution of the form {prin(pk(mp))/p}.

Cryptographic implementation of capabilities We compile the capabilities associated to
a location l .(p V) as follows:

l .Rd (p V) rd(p , s , [[V]] , w)

l . Idc (p) idc(p , h(s) + h(s + [[V]]) , w)

l . Idu idu(h(p + h(s)))

where p = prin(pk(mp)) is the owner’s public key, s is a fresh value used as a seed, and w =
sign(h(s) + h(s + [[V]]) , sk(mp)) signs the committed value [[V]].

A read capability is a tagged tuple that includes these elements. A committed id capability
is a tagged tuple that provides p and verifiable evidence of the commitment without actually
revealing [[V]]. To this end, it includes both a hash of the committed value, first concatenated
with the seed s, to protect against brute force attacks, yielding h(s + [[V]]), and the hash h(s), to
enable the receiver to correlate the owner and signature with a previously-received uncommitted
id capability by recomputing the identifier h(p + h(s)). An uncommitted id capability just
includes this unique location identifier, which may be compared to other capabilities and, later,
associated with p and s. The receiver can compute committed capabilities from read capabilities,
and uncommitted capabilities from committed capabilities, but not the converse.

The signature w authenticates read and committed id capabilities, binding their content to
the owner’s key sk(mp). Their receiver can extract p and h(s) + h(s + [[V]]) from these tagged
tuples and use them to verify w. When the signature is valid, the public key identifies the owner
of the location associated to the capability.

Detection of multiple commitments In a typical run, an honest principal receives a com-
mitment to some value from the principal p, say idc(p , v1 + v2 , w), and later the value itself,
say rd(p , s , z , w ′). The receiver can easily check that the two capabilities refer to the same
location, by testing h(s) = v1, and verify the two signatures w = sign(v1 + v2 , sk(mp)) and
w′ = sign(h(s) + h(s + z) , sk(mp)). If these tests succeed, then the receiver can check whether
v2 = h(s + M): if the test fails, the principal p can be convicted of multiply committing the
location identified by h(p + h(s)).

In preparation for the translation, we introduce functions that operate on tuples representing
capabilities in the target language. For instance, the function read implements source-language

32 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

reads as a projection, and check idc verifies the seal of committed ids.

read(x)
def
= rd3(x)

get idc(x)
def
= idc(rd1(x) , h(rd2(x)) + h(rd2(x) + rd3(x)) , rd4(x))

check idc(x)
def
= verify(idc2(x) , idc3(x) , prin1(idc1(x))) = ok

get idu(x)
def
= idu(h(idc1(x) + (+1 idc2(x))))

In general, inconsistent capabilities may be scattered in the whole system. To detect such
inconsistencies and reliably blame cheating principals, a compiled system logs all the committed
capabilities generated or received by honest principals by sending them over the channel log to
the following resolution process R. For technical convenience, we introduce the notation Q (y1)
for the verification process, parameterized by a first capability y1 and that becomes deterministic
after inputting its a second capability y2.

Q (y1)
def
= log?(y2).if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) 6= idc2(y2) then bad !〈get prin(y1)〉

R
def
= (repl log?(y1).Q (y1)) | (repl log !〈None〉)

This resolution process repeatedly reads pairs of Idc capabilities over the log channel and tests
them for inconsistencies, as described above. If cheating is detected, the principal is blamed on
channel bad. To model the fact that any resolution continuation can be discarded, we add a
replicated output of the harmless message None on log within resolution process.

The resolution process acts as an external judge auditing the compiled system, and the data
sent over the channel log as a secure audit trail. Since all messages on log are replicated, log
entries cannot be erased or modified by a malicious principal, and every principal may run its
own copy of process R. At the same time, a malicious principal cannot forge capabilities that
would accuse an honest principal, as it cannot produce a valid seal associated with the honest
principal.

In Section 3.2.5 we establish a correspondence between source systems and their crypto-
graphic implementation. In the implementation, when a resolution process receives a first
capability, its further behaviour still depends on the second capability to be received; this in-
termediate “waiting” state is not represented in the source level. To leverage this we extend
source systems to include a resolution store T =

∏
0<i<n resolving(Hi) where each of Hi is either

a (possibly fresh) low-level term sent by the adversary, or an exported local term containing
names restricted in N , and where each of resolving(Hi) denotes a resolution process that has
already input Hi and is waiting for a second input. The store T is passive; in particular it can
be discarded at any time, as defined by the reduction rules below:

adversary knowsH

0 −→ resolving(H)
AddRes

resolving(H) −→ 0
DelRes

Translation of initial configurations The cryptographic implementation is obtained by
translating the source configurations. Protocol descriptions can be expressed as initial configu-
rations of a source system that do not contain, or refer to, locations and capabilities; these are
created later, during the run of the protocol. We describe the translation of such configurations;
a full treatment of capabilities and locations is deferred to Section 3.2.4.

Our main translation function for configurations is denoted as [[[]]] and uses auxiliary recursive
translations for configurations, terms, and processes, all denoted as [[]].

The translation is a homomorphism over terms and over most systems.

[[x]] = x [[c]] = c [[func(M1 , ... , Mn)]] = func([[M1]] , ... , [[Mn]])

[[A1 | A2]] = [[A1]] | [[A2]] [[ν u .A]] = ν u . [[A]] [[{M /x}]] = {[[M]]/x}

3.2. VALUE COMMITMENT 33

Figure 3.2: Translation of processes

[[newloc (x , y).P]]a = ν sl ′ . ν cl . τ.(cl !〈None〉 | [[P]]a {cl/cx } {sl′/sx } {h(a+h(sl′))/l} {idu(l)/y})
[[commitV x (x ′).P]]a = cx?(y).([[P]]a | repl log !〈idc(a , vx , wx)〉)

{h(sx)+h(sx+[[V]])/vx } {sign(vx , sk(ma))/wx } {rd(a , sx , [[V]] ,wx)/x ′}

parsec x P =

if is idu(x) = ok thenP

else if is prin(x) = ok and is pk(x) = ok thenP

else if is pair(x) = ok then parsec (+1 x) (parsec (+2 x) P)

else r !〈None〉
parse1 x P =

if is rd(x) = ok then

if check idc(get idc(x)) then parsec read(x) P else r !〈None〉
else if is idc(x) = ok then if check idc(x) thenP else r !〈None〉
else if is pair(x) = ok then parse1 (+1 x) (parse1 (+2 x) P)

else parsec x P
parse2 x =

if is rd(x) = ok then repl log !〈get idc(x)〉
else if is idc(x) = ok then repl log !〈x 〉
else if is pair(x) = ok then (parse2 (+1 x) | parse2 (+2 x))

parse x P = parse1 x (P | parse2 x)
[[c!〈M 〉.P]]a = c!〈[[M]]〉.[[P]]a

[[c?(x).P]]a = ν r . (c?(x).parse x [[P]]a | repl (r?().c?(x).parse x [[P]]a))

[[if M = M ′ thenP1 elseP2]]a = if [[M]] = [[M ′]] then [[P1]]a else [[P2]]a

Let A the set of principals running a process in the system and E the set of other (possibly
dishonest) principals whose names occur in the system (E = P ∩ fn(A) \ A).

For each principal a ∈ A, the translation creates a secret seed ma used to generate the pair
of secret/public keys of the principal. The public key is published using an active substitution,
while the process run by the principal is compiled within the scope of the private seed ma used
for signing. Similarly, the translation includes active substitutions E that records, for each
principal e ∈ E , a public key pk(me) and an associated secret He. Resolution store translates
into partial resolution processes Q.

[[a[P]]] = ν ma . ([[P]]a | {prin(pk(ma))/a})

E =
∏
e∈E({prin(pk(me))/e} | {He/me})

[[resolving(H)]] = Q (H)

The main translation applies the auxiliary translation to the configuration, publishes the public
keys of possibly dishonest principals E, and also spawns a replicated resolution server R:

[[[A]]] = [[A]] | R | E

The translation of processes is given in Figure 3.2. (We omit the homomorphic clauses for
0, P1 |P2, replP , and ν c .P).

The translation of newloc creates a fresh location seed s′l and a local channel cl (with a
message None, recording that the location is uncommitted), and substitutes cl for cx, s′l for sx

34 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

and the idu capability for y in the continuation. We let τ.A abbreviate if n = n thenA, a process
that reduces to A in one silent step. To match our main theorem’s statement, every translation
process should make at least one labelled transition, so we force the translation to make a silent
transition first, using τ construct.

The translation of commit can proceed only if the location has not been previously committed
(the message on cx provides mutual exclusion); it then substitutes the rd capability for x′ in the
continuation code. It also generates the corresponding idc capability for the location and logs
it by sending it to the resolution protocol.

The parse function filters any received value received over channels. Terms in our source
systems are well-sorted. In the translation of the input, we encode dynamic sorting. If the value
is tagged with rd or idc, then it might (or not) be a valid capability, depending on the validity of
its embedded signature: valid capabilities are passed to the continuation, while the associated
idc should be sent to the resolution protocol. To make this atomic, we separate verifications from
logging, so that logging is only done if the entire message is well-formed. Filter parse1 checks
if its message argument is marshallable. We also check that a read capability only contains
committable terms: filter parse c checks if its argument is committable. Filter parse2 logs the
committed parts of the message. If the value is tagged with idu, then it is always passed to the
continuation. If the value is tagged with prin, then since the set of known principals P is static
and parse must check whether the received value is a public key known by the system S. We
use predicate is pk(x) which succeeds if x is tagged with pk and if the context contains an active
substitution {x/p} for some principal p ∈ A∪ E . For compound data, here pairs, each element
is separately handled using parse1 then parse2. Other values, as well as non-valid committed
capabilities, are silently discarded. In the translation of an input, we assume that the channel
r is fresh for [[P]]a , and use this channel to loop after discarding such values.

3.2.4 Model and translation of environment interactions

Our main results relate the behaviour of source systems to their cryptographic implemen-
tations (see Section 3.2.5). We describe the behaviour of systems using labelled semantics that
explicitly capture all possible interactions between a system composed of honest principals and
an abstract environment composed of potentially hostile principals. We define a labelled se-
mantics for our source language, and we use the labelled semantics of the applied pi calculus for
the implementation. To maintain the committable-cell invariants, our source semantics keeps
track of the capabilities exported to the environment and of the partial knowledge acquired
when receiving capabilities from the environment. We then extend our translation from initial
configurations to any such reachable configuration.

Extended location states and capabilities We extend the committable location states
in the source language. We use overlapping syntaxes for capabilities appearing in values, in
transition labels, and in the processes representing the state of the cells. Their general form is
l .Cap ([p] [H] [V]), where l is the location identifier; Cap ∈ {0, Idu, Idc,Rd} is a capability
tag; p is a principal name; H ranges over terms of the target language; and V is a value of
the source language. (This syntaxes extend those given in Section 3.2.1 for capabilities and
location states, with l .(a M) = l . 0 (a M)). The fields p, H, and V are optional. The presence
of a value V indicates that the location is committed to this value. The term H plays no role in
the source language, but is technically convenient in its translation: it enables us to represent
any reachable state of our implementation as the translation of a source system.

The interpretation of Cap depends on the principal p that owns the location. If a location
is owned by a ∈ A, then Cap represents the most permissive capability sent to the environment
(and H is omitted), with Cap = 0 when no capabilities have been exported so far. If a location
is owned by e /∈ A, then Cap represents the most permissive capability received from the
environment (and H records some opaque cryptographic value in its received representation).

3.2. VALUE COMMITMENT 35

Ordering capabilities We formalize the notion of “more permissive capability” by defining a
preorder � on capabilities. Intuitively, C � C ′ holds if C and C ′ have compatible contents and
C can be derived from C ′ using the equational theory. We also introduce a special capability
⊥ that represents the absence of knowledge on a location. The order is defined by the axioms
below:

⊥ � 0 ct 0 ct � Idu ct Idu fu (ct) � Idc ct Idc fc (ct) � Rd ct

Cap (p H) � Cap (p H V)

where ct is any fixed contents and fu and fc are fixed functions that rewrite H in ct. These
functions are defined as:

fu(a V) = (a) fu(e H V) = (e h(+1(H)+e))

fc(a V) = (a V) fc(e H V) = (e h(H)+h(H +[[V]]) V)

We write CgC ′ for the sup of C and C ′ with respect to �, when it exists.

Normal form We say that a source system is in normal form when it is of the form

S = νN
(∏

l∈L l .Cl |
∏
a∈A a[Pa] | φ

)
for some finite sets of names N , L, and A and active substitutions φ. Every initial configuration
can be written in normal form (with L = ∅) using structural equivalence.

Definition 3.2.1. A system S is well-formed when it is structurally equivalent to a normal
form such that if l is a location name within S then l ∈ L and l occurs only

(1) in terms l.C such that: (a) if get prin(l . Cl) ∈ A, then C and Cl are owned by the same
principal and if C has a value, then Cl has the same value; and
(b) if get prin(l . Cl) /∈ A, then C � Cl (informally, for a cell owned by the environment,
the system cannot have capabilities more permissive than those received);

(2) in subprocesses commitM l (x).P of Pa when a = get prin(l . Cl);

(3) in N when get prin(l . Cl) ∈ A and Cl = 0 ct .

In the labelled semantics below, we require that the initial and final systems and the label
be well-formed. We define labelled transitions A

α−→ A′ between source systems on top of an
auxiliary relation C

γ−→ C ′ between capabilities.

Labelled transitions on capabilities Input/output actions with the environment can affect
the state of memory cells. To model these updates compositionally we define a labelled transition
semantics between capabilities.

C
!C ′
−−→ CgC ′

C ′ � C ∧ prin of(C ′) ∈ A

C
?C ′
−−→ C

prin of(C ′) /∈ A

C
?C ′
−−→ CgC ′

The label !C ′ records that the capability C ′ is exported to the environment: the outcome of the
transition C gC ′ is an updated record of the most permissive exported capability. The label
?C ′ records that the capability C ′ is imported from the environment. There are two import
rules, depending on the owner of C ′. If the owner is in A, then the capability refers to a location
which is part of the system, so the environment can send back at most capabilities that can be
derived from those exported by the system, hence the C ′ � C condition. On the contrary, if
the owner is not in A, the environment can send any capability, provided that the capability is
compatible with the partial knowledge that the system already has, i.e. that CgC ′ exists.

Labelled transitions on systems The labelled semantics for systems is adapted from the
one for the applied pi calculus. We point out the novelties, and refer to Appendix B.1.6 for the
full semantics.

36 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

The labelled semantics has silent steps for all system reductions, including the location-
specific reductions described in Section 3.2.1. The axioms for input and output are recalled
below.

a[c!〈M 〉.P]
c !M−−−→ a[P] a[c?(x).P]

c?M−−−→ a[P{M]
/x}]

When a capability is received, the rule substitutes in a capability value M] obtained from the
capability label M by erasing information used only to update the cell state. Erasing is defined
as follows:

l . Idu (p H)] = l . Idu l . Idc (p H V)] = l . Idc (p) l .Rd (p H V)] = l .Rd (p V)

Capability labels and derived capabilities have the same translation [[M]]] = [[M]].

The context rules below ensure that the communication of capabilities is reflected in the
state of the cells of the system; the function locs(l,M) computes the most permissive among
the capabilities for cell l that occur in the transmitted capability (possibly within another
capability). If the simultaneous commitments are incompatible, their sup does not exist and
the update of memory cells is impossible.

A
c !M−−−→ A′ ∧ C0

! locs(l,M)−−−−−→ C1

l .C0 | A
c !M−−−→ l .C1 | A′

A
c?M−−−→ A′ ∧ C0

?locs(l,M)−−−−−→ C1

l .C0 | A
c?M−−−→ l .C1 | A′

locs(l, u) = ⊥

locs(l, l .Cap (p H V)) = Cap (p H V) when Cap ∈ {Idu, Idc}

locs(l, l .Rd (p H V)) = Rd (p H V)glocs(l,V)

locs(l,M1+M2) = locs(l,M1)glocs(l,M2)

We equate l .⊥ | A to A, so that the input rule covers the case of an input carrying fresh,
unknown locations from the environment. (The resulting configuration must be well-formed,
which excludes the introduction of a fresh location state for l if one already exists in the system.)
We impose the following well-formedness conditions on labels: the target term H, the principal
in uncommitted capabilities, and the value in committed capabilities, appear iff the transition
is an input and the capability is owned by e /∈ A.

Example of transitions in the source language Consider the third round of the game of
Section 3.2.2, with two honest players a1 and a2 and an external, untrusted principal e0 /∈ A
running the server. A simplified configuration of this system can be written

A′ = l . Idu (e0 H) | a1[c1?(x1).P1] | a2[c2?(x2).P2]

where l is the uncommitted cell pre-allocated by e0 to store the winning move. (Here H =
h(e0 + h(s)) for some secret s created by e0.) We have possible input transitions on channels c1

and c2, to notify the winning move to each of the players. The first transition may be:

A′
c1?l .Rd (e0 s 11)−−−−−−−−−−→ l .Rd (e0 s 11) | a1[P1{l .Rd (e0 11)/x1}] | a2[c2?(x2).P2]

which triggers the final process P1 with a read capability for l substituted for x1, carrying the
game result (here 11). At the same time, the state for l is updated by the third capability-
transition rule, since Idu (e0 H)gRd (e0 s 11) = Rd (e0 s 11). Conversely, for instance, transitions
with a label that attributes l to a1 instead of e0 are disabled. At this stage, the configuration

3.2. VALUE COMMITMENT 37

records the commitment on l, so the only subsequent input transition A′′
c2?l .C ′
−−−−−→ A′′′ carrying

a read capability C ′ for l must be such that Rd (e0 s 11) � C ′ (by the third capability-transition
rule), that is, C ′ = Rd (e0 s 11). This guarantees that the second player gets exactly the same
result as the first one.

Relating the reduction-based and labelled semantics for the source language The
labelled semantics precisely characterizes the interactions between a system and an arbitrary
environment. Given two systems A and E consisting of principals in A and E , respectively, if

E |A −→∗ S then there exist two such systems A′ and E′ and transitions A
φ−→ A′ such that S ≡

νN .(E′ |A′), where N is the set of names exported in the labels of φ. Conversely, for all systems

A and transitions A
φ−→ A′, there exists a system E′ and reductions E |A −→∗ νN .(E′ |A′).

Translation of extended location states and capabilities We extend the translation of
Section 3.2.3 to cover all configurations reachable by transitions from initial configurations. This
extended translation is inductively defined for all well-formed configurations in normal form,
using the clauses of Section 3.2.3 plus the rules below for location states and capabilities.

We extensively rely on active substitutions [Abadi and Fournet, 2001] with the following
naming conventions: for a location l, cl denotes the local channel that contains the state of
the location, sl the secret seed, vl the hidden value, and wl the seal. We define two extended
processes that compute and log identifiers, commitment values, and seals for a location owned
by a given principal p using active substitutions.

ϕ(M1,M2)p = {h(p + M1)/l} | ς(M1,M2)p

ς(M1,M2)p = {M1 + M2/vl} | {sign(vl , sk(mp))/wl} | repl log !〈idc(p , vl , wl)〉

We first translate locations owned by honest principals a ∈ A. The translation implements
these locations by sending the location state on the local channel cl, activating the relevant
substitutions, creating a fresh secret and, for committed locations only, running a replicated log
entry:

[[l . 0 (a)]] = [[l . Idu (a)]] = cl !〈None〉 | {h(a + h(sl))/l} | ν s . {s/sl}
[[l . 0 (a V)]] = [[l . Idc (a V)]] = [[l .Rd (a V)]] = ϕ(h(sl), h(sl + [[V]]))a | ν s . {s/sl}

We also translate locations owned by principals e /∈ A whose capabilities have been pre-
viously received by some principals in A. The translation records partial knowledge of these
locations, in the form of active substitutions plus, for committed locations only, a replicated
log entry. The form of the terms in these substitutions reflect the test that processes in A
have successfully performed before accepting these values, e.g. that the seal is a well-formed
signature from e.

[[l . Idu (e H)]] = {H /l}
[[l . Idc (e (M ′ + M ′′) V)]] = ϕ(M ′,M ′′)e

[[l .Rd (e M V)]] = {M /sl} | ϕ(h(M), h(M + [[V]]))e

In a well-formed system, there is a location state for every capability that occurs in the
system. Accordingly, the translation of capabilities relies on the active substitutions introduced
by the translation of location states, as follows:

[[l . Idu]] = idu(l) [[l . Idc (p)]] = idc(p , vl , wl) [[l .Rd (p V)]] = rd(p , sl , [[V]] , wl)

The compilation of each location state l .C introduces name cl and variables sl, vl, wl, l
whose visibility from the environment depend on the exported capability recorded in C. Thus,
our translation finally introduces the following top-level restrictions: for every location, if no
capability have been exported, all these names and variables are restricted; if C has tag Idu,

38 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

the identifier l is unrestricted; if C has tag Idc, the variables wl and vl are also unrestricted; if
C has tag Rd, only the channel cl is restricted.

Example of transitions in the target language Let us consider how our translation op-
erates on the following transition, which represents player a1 receiving the result of the game
from server e0 (with H = h(e0 + h(s))).

l . Idu (e0 H) | a1[c1?(x).P1]
c1?l .Rd (e0 s 11)−−−−−−−−−−→ l .Rd (e0 s 11) | a1[P1{l .Rd (e0 11)/x}]

The translated system {H /l} | [[[a1[c1?(x).P1]]]] simulates the source transition by an input
with label c1 ? (rd(e0 , s , 11 , sign(h(s) + h(s + 11) , sk(me0)))), followed by a series of reductions
through the code of parse, including dynamic checks on is rd and check idc. In 6 silent steps
(including 3 steps for recursive processing of value 11), this yields the process

{H /l} | [[a1[P1]]]{rd(e0 , s ,11 , sign(h(s)+h(s+11) , sk(me0)))/x}
| repl log !〈get idc(x)〉 | ν r . (repl r?().c1?(x).parse x [[P]]a) | R | E.

After applying structural equivalence with active substitutions and eliminating the dead loop
on channel r, we obtain a system

ν sl . ν vl . ν wl . ({s/sl} | ϕ(h(sl), h(sl + 11))e0 | [[a1[P1]]]{rd(e0 , sl ,11 ,wl)/x}) | R | E

that matches the translation of the resulting source system above.

3.2.5 Correctness results

The first proposition states that the behaviour of every source system can be simulated by
its translation. That is, for any labelled trace of all source systems, there is a labelled trace of
the process resulting from its translation. This shows the correctness (or functional adequacy)

of our translation. We let
φ−→ (resp.

ψ−→) range over series of transitions in the labelled semantics
of the source (resp. target) language.

Theorem 3.1 (Functional adequacy). Let A be a well-formed source system.

For all series of transitions A
φ−→
∗

A′ , there exist transitions [[[A]]]
ψ−→
∗

[[[A′]]].

The proof of the theorem is by induction on a series of source transitions between systems
in normal forms. For each source transition, we exhibit target transitions that commute with
the translation. The full proof can be found in Appendix B.2.2.

The “upwards” direction is more challenging: the trace produced by the translation of a
source process A can be related to a trace produced by A unless its translation emits the name
of a cheating principal on the special channel bad . This property uniformly guarantees the
security of the translation of all systems with respect to the source semantics, provided that a
proof that a principal cheated is a reasonable exceptional outcome for the other principals.

We let S −→∗D S ′ denote that a target system S goes to S′ with a (possibly empty) series

of silent deterministic transitions, and let S ⇓ M abbreviate S −→∗D
bad !M−−−−→ S ′ for some S′; we

then say that M is blamed.

Theorem 3.2 (Security). For all transitions [[[A]]]
ψ−→
∗

S starting from a well-formed source
system A, we have

(1) either there are source transitions A
φ−→
∗

A′ leading to a well-formed source system A′ such
that S −→∗D [[[A′]]]; or S ⇓ e for some e /∈ A;

(2) if S ⇓ M , then M /∈ A.

3.3. OFFLINE E-CASH 39

The proof is by induction on the series of transitions in the target language that do not trigger
a blame. The first part of the theorem states that either the source semantics is respected, or
the implementation at least provides the honest participants with the name of one dishonest
principal to blame. Said otherwise, its statement excludes the possibility of cheating without
eventual detection. The second part of the theorem expresses that honest participants are
never blamed (even in the case some dishonest participants cheat), a necessary property for any
optimistic implementation. The full proof can be found in Appendix B.2.3.

The form of our theorem differs from security properties for other programming abstractions
(e.g. [Corin et al., 2007, Abadi et al., 2002]), where any run or labelled trace of the cryptographic
implementation of a source program is related to a run or labelled trace of the program on the
source level. Reflecting a more flexible approach to security, it enables bad runs as long as
malicious principals are reliably detected and blamed.

We illustrate how the resolution protocol and the verifications made by the translation of
receive suffice to detect write-after-commit attacks. Consider the online game example and
suppose that a1, a2 ∈ A and e0 /∈ A, that is, the server implementation is malicious. In
particular, the server implementation may commit location l twice, to convince a1 that he is
the winner with his bid 11 and a2 that he is the winner with his bid 8. The system composed
by the translation of the two clients [[[A1 | A2]]] generates a trace

[[[A1 | A2]]]→ · · · → [[[A′]]]
c1 ? (rd(e0 , s ,11 ,w))−−−−−−−−−−−−−→ c2 ? (rd(e0 , s , 8 ,w ′))−−−−−−−−−−−−−→ S

where the seals w and w′ sign commitments of l to 11 and 8, respectively.

For the first input transition, there exists a matching source transition, with a resulting
source system A′′ that includes the location state l .Rd (e0 s 11). Moreover, the translation of
A′′ emits the corresponding idc on log.

For the second input transition, however, there is no matching source transition. This would
require a capability transition from Rd (e0 s 11) to Rd (e0 s 8), which is excluded by our definition
of the � preorder. Instead, the resulting system sends a second Idc on log. As soon as the
resolution process reads both commitments, it detects that they are inconsistent, and blames
e0 on bad .

Abadi et al. [2002] phrase the security result on abstractions of secure channels and their
implementations in terms of behavioural equivalence relations. In our system, an interesting
future work is to study if our results can be extended to equivalence relations.

3.3 Offline e-cash

In cryptography, anonymous electronic cash was invented by Chaum [1982]. Also called elec-
tronic money or digital cash among others, e-cash is intended to be used in the same situations
as the usual cash – to purchase products while keeping one’s anonymity. Because the payer’s
identity must be hidden, both cash and e-cash should be self-contained means of payment: once
accepted, the purchase cannot roll back. The main efforts of the bank thus aim to prevent and
detect malicious customers to forge cash. While in real life, complex printing and watermarking
techniques are used to make cash difficult to reproduce, electronic cash uses cryptography to
encode data representing valid coins. Still, any electronic data is a sequence of bytes which can
be freely copied, so a malicious customer could try to double-spend an electronic coin, that is
to use it several times. A usual e-cash scheme includes the following parties:

– a bank holds accounts of merchants and clients;
– a merchant accepts e-cash from clients and deposits it with its bank;
– a client withdraws e-cash from its bank and spends it with merchants.

Banks are the parties who can perform the final check of the validity of a coin, and therefore
decide whether to accept it – or blame its client. To get the guarantee of acceptance of a digital

40 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

coin by the bank, a merchant can ask an online confirmation of the coin validity from the
bank before accepting a spend. However to avoid the communication overhead the merchant
can accept a user’s coin after minimal local checks, accumulate coins and then to deposit them
in batches to the bank offline. The merchant is then guarnteed that either the coin will be
accepted by the bank, or, when this coin has already been deposited by another merchant who
received the same coin as payment, the malicious client will be caught and punished. This
guarantee should not though compromise the anonymity of well-behaved clients.

Comparison with value commitment Offline e-cash can be seen as a variant of our memory
model for value commitment with more interesting secrecy and privacy properties. Coins extend
committable cells in the following way:

– the bank who creates the coin is distinct from the client who has the privilege to “commit”
the coin to the name of the merchant who should be paid using it;

– the bank does not receive any reference or capability for the created coin;
– there is no way to extract the client’s identity from the coin;
– double-spending a coin is the counterpart of multiple commitment of a cell; proving the

former requires the evidence that the same coin has been spent twice, while proving the
latter requires two capabilities committed to different values.

We design an extension of applied pi that models anonymous offline e-cash by hardwiring
its properties in the abstract semantics of the language. To validate the practicality of our
abstraction, we relate it to a computational cryptographic scheme [Camenisch et al., 2005].
Indeed, the security goals of the scheme being very complex and technically difficult to achieve,
we aim an existing cryptographic implementation rather than a symbolic implementation like
the one of Section 3.2. Then, to relate the abstract and the cryptographic layers we need to define
an intermediate, abstract cryptographic layer which is syntactically close to the abstract one
but which models the principal corruption like in the cryptographic layer. In this intermediate
level we encode an equivalent of the resolution process to detect and blame cheaters using the
logged evidence.

Target cryptographic implementation An important number of implementations of e-
cash exist [Chaum, 1982, Chaum et al., 1988, Okamoto and Ohta, 1989, Tsiounis, 1997, Ca-
menisch et al., 2005, 2007a]. We chose to implement our abstract language using the scheme
proposed by Camenisch et al. [2005] which guarantees anonymity of clients, detection of fake
coins by the bank (also called balance) and detection of double-spenders. This work develops
complex cryptographic protocols for withdrawal, spending, and depositing e-cash and shows
their correctness at the level of computational cryptography. Our abstraction can be used to
assess the usability of their cryptographic definitions to reason about the application properties
in practice.

Given the properties of some low-level scheme, how far are they from those that a pro-
grammer of e-cash applications would expect? What properties does the resulting application
offer? With our three-layer system, on one hand a programmer can write short and readable
applications using our intuitive primitives, so that one can reason about high-level applica-
tion properties.On the other hand, there is a considerable gap between the idealized semantics
and the cryptographic implementation. Two kinds of discrepancies are to be considered. The
intended properties may not be achieved for two kinds of reasons.

– Cryptographic protocols, even if run as intended by honest principals, may fail with neg-
ligible probability. In the intermediate layer we introduce primitives that model logic
subprotocols of the cryptographic level: bank’s and user’s side withdrawal, user’s and
merchant’s side spending, merchant’s and bank’s side deposit. We assume that these prim-
itives always successfully terminate (according to the low-level definitions). We abstract
away from interception, replacement, damaging attacks on messages by active adversary,

3.3. OFFLINE E-CASH 41

Figure 3.3: Syntax of the applied pi calculus extended for e-cash
P ::=

| . . .
| withdraw!B (x) .P
| withdraw?U .P
| spend!BM c u
| spend?B (x) (x1)(x2).P
| deposit!BM
| deposit?M (x).P

A, E ::=
| . . .
| l .(B U I)

M ::=
| . . .
| rcp(l,B,U,s)
| Goods

I ::=
| ∅
| {s, I}
| {s, I}

but we still consider that the adversary may have corrupted a subset of principals, so they
can for example double-spend.

– Protocols may be run by dishonest principals who misuse them. While code for cheating
users may be written in the low and intermediate levels, we exclude any kind of active
attack and double-spending from the abstract layer, providing it with a strong defensive
semantics.

Results We show that processes in abstract and intermediate level semantics either have the
same compliant behaviour or there is a malicious double-spender who can be identified and
blamed using reliable evidence of his guilt. The relation to the computational implementation
is out of scope of this thesis; the details and proofs of correctness and security for the low level
can be found in the online technical report [Adão et al., 2008].

3.3.1 A language for offline e-cash

As a starting point for our formalization of e-cash, we design a toy language suited for
intuitive programming of e-cash applications. We extend an instance of applied pi (as presented
in Section 2.3) with e-cash primitives and coins. The grammar for terms M , processes P ,
systems A and coin stores I is given in Figure 3.3.1.

Among names, the principals are denoted with p for a generic role, U for users, M for
merchants and B for banks. The set of all principals is statically known and denoted P; the
subset of honest principals is denoted H.

The set of coin identifiers is ranged over by l. Terms M are extended with sale receipts rcp
(described below) and constants (Goods) that model digital goods (for instance .mp3 files).

Coins A coin is withdrawn from a bank by a user who can later decide to spend it with
one merchant of its choice. The state of each coin in the system is modeled by an extended
process l .(B U I) where l is the unique coin identifier, b is the identity of the bank that issued
the coin, u is the principal that withdrew the coin, and I is the list of the transactions in which
this coin was used for payment. The user identity u is only recorded to maintain consistency
and well-formedness of configurations, and cannot be extracted from the coin. We explain
further that the semantics of our high-level language disallows multiple spendings, so the list
is at most of length 1. However since we reuse the syntax for the intermediate level language
where multiple spendings are tolerated, we keep the general notation for lists with arbitrary
number of transactions. A transaction is denoted with its identifier. During its lifetime a coin
goes through the following states (listed in their chronological order):

– l .(B U ∅) denotes a coin that has been withdrawn but not yet spent or deposited;
– l .(B U { s }) denotes the same coin once it has been spent in the session s;
– l .(B U { s }) denotes the same coin once it has been deposited.

42 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

Figure 3.4: Reduction rules for e-cash
(Withdraw)

n 6∈ fn(P1) ∪ fn(P2)

U [withdraw!B (x) .P1] | B[withdraw?U .P2] →a ν l . (U [P1{l/x}] | B[P2] | l .(B U ∅))
(Spend)

(s /∈ fn(P))

U [spend!BM c l] | M[spend?B (x) (x1)(x2).P] | l .(B U ∅) →a ν s . (M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | l .(B U { s }))
(Deposit)

M[deposit!B 〈l,s〉] | B[deposit?M (x).P] | l .(B U { s }) →a B[P{rcp(l,B,U,s)/x}] | l .(B U { s })

The scheme developed by Camenisch et al. [2005] allows to users to withdraw wallets of coins.
We only consider wallets that contain a single coin; with a slight abuse of terminology we refer
to “wallets” as “coins”.

E-cash primitives We introduce three pairs of processes that manipulate coins; these actions
represent the intent of each participant to run one of the three e-cash subprotocols (withdraw,
spend, or deposit) with a remote peer. For each protocol, there is an initiator and a responder,
whose actions end with ! and ?, respectively. By convention, the first argument of these actions
(except for spend?, waiting an anonymous payment) indicates the intended partner.

Process withdraw!B (x) .P allows to initiate the withdraw protocol with the principal B and
continue with process P where x is bound to the identifier of the withdrawn coin. Process
withdraw?U .P waits for the principal U to initiate the withdraw protocol and continues as
process P . Process spend!BM c l allows to spend a coin identified as l via the bank B with the
merchant M for the goods identified with c. Since spending involves some kind of exchange,
the correlator c provided by the user allow to specify details on the purchased digital good (see
further discussion of the language design). For instance, c may be the name of the purchased
song and the information on the delivery. The spend! process has no continuation so that the
end of a particular spend transaction cannot be detected and the anonymity of spendings is
preserved. Process spend?B (x) (y)(z).P waits for some principal to spend a coin via bank B and
continues as process P where x is bound to the product information, y is bound to the pair
(coin identifier, session identifier), and z is bound to the receipt. Process deposit!B 〈l,s〉 allows to
deposit a coin l spent during transaction s to the bank B; like spend!, deposit! is asynchronous.
Process deposit?M (x).P waits for the principalM to deposit a coin and continues as process P .

Receipts After accepting a payment, the merchant obtains a transferable receipt rcp(l,B,U,s)
which witnesses spending of the coin l issued by the bank B to the user U with the merchantM,
recorded with the fresh session identifier s. Sale receipts can be communicated over channels;
they can also be manipulated using special functions, according to the equational theory below.

bank (rcp(n,B,U,s)) = B
merchant (rcp(n,B,U,s)) = s

The merchant and bank functions yield the merchant’s and the bank’s name from sale
receipts, respectively. Receipts will be used by our more realistic, intermediate semantics, to
detect and identify double-spenders.

Reduction semantics Let A →a A′ denote the relation ”Configuration A reduces to config-
uration A′“, and let A ⇒ A′ denote its transitive and reflexive closure. We extend the reduction
semantics of applied pi calculus with three rules for e-cash transactions given in Figure 3.3.1.

Rule Withdraw describes synchronization between a user and a bank willing to run the
Withdraw protocol with each other. The bank supposedly holds this user’s account and the

3.3. OFFLINE E-CASH 43

account has a sufficient balance. In the resulting configuration a fresh coin is created and its
identifier l is bound in the user’s continuation while the bank does not get access to the coin.
The coin state records that the created coin has not yet been spent (the store is empty).

Rule Spend describes the interaction between a user in possession of a coin identifier l
corresponding to a non-spent coin with a merchant willing to run the spend protocol with each
other. Both the user and the merchant must have their accounts in the same bank. In the
resulting configuration a unique fresh transaction identifier s is generated; then the session
correlator c, the coin identifier paired with the transaction identifier, 〈l,s〉, as well as the receipt
rcp(l,B,U,s) are bound in the continuation process of the merchant. The coin state records the
transaction identifier s in its store; thus the same rule cannot be applied another time. (Note
that the user name is only included in the coin and receipt only for consistency but it is not
visible to the attacker.)

Rule Deposit describes the interaction between a merchant and its bank who are willing
to run the Deposit protocol with each other. The merchant deposits the coin by providing its
identifier as well as the identifier of the transaction through which he got the coin. In the
resulting configuration the bank obtains the receipt rcp(l,B,U,s) and the coin finally is marked
as being in final state; we denote this by overlining the transaction identifier s in the coin store
(l .(B U { s })). As for the Spend rule, the coin state is record and thus the same rule cannot
be applied another time. The bank supposedly credits the merchant’s account after successful
application of this rule.

Well-formed configurations Configurations, or systems, denoted A, are distributed parallel
compositions of local processes run by at most a fixed subset of honest principals, written HA.
Configurations also include the global state for each known coin currently in circulation.

Up to structural equivalence, all configurations are of the form

νNb.
∏
p∈HA

p[Pp]|
∏
l∈Nc

l.Cl

whereNb are the secret names of the configuration, andNc are the coin identifiers. This notation
allows for example to refer to the coins that have been issued by honest banks to honest users
but not yet spent: Nc ∩Nb.

Definition 3.3.1. An initial configuration, denoted A0, is a configuration that contains no coins
and no receipts. A well-formed configuration is a configuration where for any coin identifier
l ∈ Nc, there is at most one coin, and l may only occur

– in a spending process spend!MB c l when Cl = l .(B U ∅) and (l ∈ Nb if B ∈ H).
– in a depositing process deposit!B 〈l,s〉 when s ∈ Nb and Cl = l .(B U { s }).
– in a receipt rcp(l,B,U,s) when Cl = l .(B U { s }) or Cl = l .(B U { s }).

Trivially, initial configurations are well-formed. Our reduction semantics guarantees that
each coin can only be spent once: for any l ∈ Nc, if Cl = l .(B U I) then |I| is at most equal to 1.

Lemma 3.3 (Preservation). Well-formed high level configurations are stable by reductions. For
any well-formed high level A, if there is a high level system A′ such that A ⇒ A′ then A′ is
well-formed.

3.3.2 Properties of the language

The e-cash protocols that we model [Camenisch et al., 2005] enjoy several security proper-
ties, including correctness, balance and anonymity. Formally, they are all example properties
following from our language semantics.

We say that configurations A and A′ are contextually equivalent, denoted A ≈ A′, when for
all context C and channel name c, we have that C[A] can output on c iff C[A′] can output on c.

44 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

– Correctness
An honest user can withdraw from an honest bank, according to rule Withdraw.
An honest user can spend with an honest merchant according to rule Spend. Whenever
an honest merchant obtains a pair of coin and session identifiers through a spend (this is
the only way to obtain those, in our semantics), this merchant will be able to deposit at
the bank according to rule Deposit.

– Balance
For any series of reductions of an initial high level configuration, rule Deposit cannot
be applied more often than rule Withdraw for each coin. First, we have that deposit?
must interact with deposit parameterized with the coin and transaction identifiers which
are generated when spend? interacts with spend itself parameterized by the coin identifier
which in turn is generated after the withdrawal. Second, both spend and deposit can only
occur once for every coin. So that each deposit corresponds exactly to one withdrawal.

– Anonymity of users. A bank cannot learn anything about a user’s spendings. Indeed,
executing withdraw? does not provide any information on the coin. The deposit process
only provides a blinded receipt rcp(l,B,U,s) for which no high level equations/rules allow
to extract the user’s identity.
For instance, the following systems are contextually equivalent (merchant M cannot dis-
tinguish payments from p1 and p2, if they come with the same correlator):

p1[spend!BM c l] ≈ p2[spend!BM c l]

Discussion of our language design Our language captures the essence of e-cash protocols
and puts forward the base properties which are not obvious at all in their low level implemen-
tation. However, as it often happens, this model is too pure to conveniently express real world
applications.

Our current design choices were driven by the implementation of Camenisch et al. [2005].
Our model can well express anonymous money donations. But the language is not rich enough to
express a realistic electronic commerce of digital goods. In real life there is a need of a frame for
sale negotiation, without losing anonymity of clients. To tackle this, our sale primitives include
a primitive payload handling. A client passes a correlator to the merchant when spending. It
is up to the client to ensure that the correlator does not disclose his identity. In practice it
may be a nonce with which the merchant can label the goods when posting them on some
public channel (and provided that the others readers of the channel are trusted). Or it can be a
password for some independent goods storage service, where the merchant sends the goods and
the client uses the password to get hold of them. We may instead assume that every merchant
only sells one type of products, all participants have access to the description and availability
information. Also in practice our design is not fair to the users. A user who spent a coin does
not get any receipt, and so if the merchant is malicious he can even lose his money.

Example 3.3.1 (Tagged delivery). A client can provide a tag k to be attached to the purchased
electronic good at delivery. Let c be a public channel used for delivery. On receiving his puchase,
the client compares its tag with the one he provided.

U [withdraw!B (x) .ν k . (spend!BM r x | c?(y).if snd (y) = k thenPU else 0)]

The merchant attaches the tag chosen by the client (here bound to variable x) to the purchase
and sends it on channel c.

M1[spend?B (x) (y)(z).(deposit!B y | c ! 〈Song.mp3,x〉 |PM1)]

3.3. OFFLINE E-CASH 45

3.3.3 Log-based implementation

As a further step to modelling realistic offline e-cash we propose an intermediate level se-
mantics that allows double spending. We also propose a fraud detection mechanism based on
logging.

Coins, revisited We extend the semantics of coins to account for double-spending (and we
use the same syntax as before, shown in Figure 3.3.1.

A coin contains the list of the sale identifiers it has been used for. We recall that the abstract
semantics only allows this list to be empty, or a singleton.

Information received during an e-cash protocol on a coin is sufficient to construct or update
the coin state in the system.We express compliant updates for coins as a preorder on coins.

We formalize the notion of “compatible coin” by defining an irreflexive preorder ≺ on coins.
Intuitively, l.C ≺ l.C ′ holds if the information in C can be derived from that in C ′. The special
marker ⊥ represents the absence of knowledge on a coin. The order over coins is defined by the
axioms below:

l.⊥ ≺ l .(B U I) when B /∈ H
l .(B U I) ≺ l .(B U I ′) when I ≺ I ′

The only particular constraint on updates is that only coins owned by adversarial banks can be
created by the environment. All other operations are allowed to happen in the environment,
and the honest configuration can only learn them after the fact, because a logically following
protocol is run, or because a corresponding receipt has been received. The order over coin
contents is the following:

∅ ≺ { s } ≺ { s }

Compared to the preorder on capabilities in Section 3.2, the updates for coins have two
flavours. First, since “commitments” (spends and deposits made by the environment) are
distributed in e-cash, we need the irreflexivity of the preorder to ensure that the update for the
corresponding protocols can only be done once. We write C] C ′ for the sup of C and C ′ with
respect to ≺, when it exists (for better visibility, we often mark it in red:]).

Second, the receipts are quite similar to the marshallable capabilities for committable cells,
a same receipt may be received several times. We write C g C ′ for the sup of C and C ′ with
respect to the reflexive closure of ≺, when it exists.

We rewrite the abstract reduction semantics into the following equivalent form:

(WithdrawSup)
(l /∈ fn(P1) ∧ l /∈ fn(P2))

U [withdraw!B (x) .P1] | B[withdraw?U .P2]→i

ν l . (U [P1{l/x}] | B[P2] | l .(B U ∅))

(SpendSup)
s /∈ fn(P)

U [spend!BM c l] | M[spend?B (x) (x1)(x2).P] | l .(B U I)→i

ν s . (M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | l .(B U I]{ s }))

(DepositSup)

M[deposit!B 〈l,s〉] | B[deposit?M (x).P] | l .(B U I)→i

B[P{rcp(l,B,U,s)/x}] | l .(B U I]{ s })

We equate l.⊥|A to A, so that the input rule covers the case of an input carrying fresh,
unknown coins from the environment. Like for the committed cells, the resulting configuration
must be well-formed, which excludes the introduction of a fresh coin state for l if one already
exists in the system.

46 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

Intermediate level semantics A coin is now only used for

– recording valid coins issued by honest banks, so that an adversary cannot forge them;
– recording deposits, so that an adversary cannot deposit exactly the same coin several

times (replay attacks by a merchant).

Since multiple spendings are allowed, the list of sale identifiers for which the coin has been spent
or deposited can have size greater than 1.

We have the following invariant for a coin transaction set I: a transaction number s either
(a) unknown, then s 6∈ I; (b) or spent, then s ∈ I or s ∈ I; (c) or deposited, then s ∈ I.

In the intermediate semantics, the symbols g and] applied to a list of sale identifiers yield
this list where the corresponding sale identifier, if any, is updated to maintain the invariant, or
is added to the list.

The reduction rules for the intermediate level are the same as for the abstract semantics,
except for the spend rule which we replace with the following rule We keep the same reduction
rules for the intermediate level, (in the coin update the strict sup] is replaced with g):

(SpendInt)
s /∈ fn(P)

U [spend!BM c l] | M[spend?B (x) (x1)(x2).P] | l .(B U I)→i

ν s . (M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | l .(B U Ig{ s }))

With the “set” semantics of], during deposit if the sale has already been recorded for the
coin, then the deposit is not accepted since the merchant is trying to deposit twice the same
coin.

The syntax of the intermediate language processes is the same; additionally we provide a
special process

identify M M ′ (x).P

We allow participants to collect evidence (the rcp receipts for coins) and to detect and identify
double-spenders, using identify. When given two receipts for the same coin but with different
transaction numbers – characteristic for a double-spent coin – it reduces to P where x is bound
to the extracted identity of the coin’s spender. This is the only case when the system reveals
the user identity. Otherwise – the evidence is either insufficient for blaming or invalid –,the
process is stuck. We thus guarantee weak exculpability : a user can only be successfully blamed
if he indeed double-spent.

(Identify)
s 6= s ′

p[identify rcp(l,B,U,s) rcp(l,B,U,s ′) (x).P] −→ i p[P{U/x}]

To detect double spending in practice, one needs to collect all the receipts for each coin. We
do not hard-wire such logging but only ensure that there is enough data available to record in
logs – the ready-to-log receipts are available when accepting a spend or a deposit. Typically,
logs should be kept on bank’s side but we leave the choice of their efficient implementation to
the programmer.

Systematic logging and fraud detection To achieve a strong guarantee of a posteriori
fraud detection, identify process should be introduced systematically into processes running at
the intermediate level, at all possible points of fraud.

Similarly to the optimistic implementation of value commitment in Section 3.2, we introduce

3.3. OFFLINE E-CASH 47

logging and a global resolution process. The implementation is defined by the following clauses:

[[spend? p (x) (y)(z).P]] = spend? p (x) (y)(z).(P | repl log ! z)

[[deposit? p (x).P]] = deposit? p (x).(P | repl log ! x)

[[u?(x).P]] = u?(x).(P | if isrcp((x)) = ok then repl log ! x else 0)

[[p[P]]] = p[[[P]]]

Resolution = repl log?(x1).log?(x2).identify x1 x2 (x).bad ! x

[[[A]]] = [[A]] |Resolution

The translation of all other constructs is homomorphic. When accepting a spend, a deposit,
or receiving a sale receipt via a normal channel the corresponding receipts are recorded over
channel log. The replicated contents of this channel models the system log. We deploy the
Resolution process on top of the translation of systems. The Resolution process repeatedly
reads and identifies pairs of rcp receipts. When a fraud is exposed by the receipts, the process
identify reduces and the identity of the guilty user is sent over channel bad. We say that a
system detects cheating if it outputs on channel bad.

For our theorems we only need to compile initial high level systems. Conversely, their
translations after reductions and discarding the history, may be decompiled into well-formed
high level systems.

3.3.4 Model and translation of environment interactions

Our results relate the behaviour of abstract systems and their intermediate level implemen-
tations. We define a labelled semantics that precisely characterizes the compliant interactions
between a system of honest principals and an arbitrary, possibly hostile environment.

The labels have the following shape: action, subject, peer, extra arguments. For the rules
with label φ p1 p2 . . . we systematically have the side condition p1 ∈ H and p2 /∈ H. Labels
νn.φ! . . . model standard scope extrusion: a secret name n is sent to the adversary. Labels
νn.φ? . . . model “intrusion”: learning the fresh name n from the adversary (with the guarantee
that n does not clash with any of the free names of the configuration).

We require that the following LTS rules are only applied to well-formed systems, and that
they produce well-formed systems. We present the other labelled transitions from the point of
view of different honest users who interact with the environment: honest banks, honest users
and honest merchants. Internal reductions between honest users appear as silent transitions to
the adversary.

Abstract layer An honest user can withdraw money from a bank and spend it with some
merchant. Both can happen either with an honest or a dishonest peer: the former interaction
is described by a reduction rule, the second by a labelled transition. At withdrawal, a coin is
created; at spend, a fresh session number is generated at the adversary’s side, so the coin state
is updated with a fresh identifier.

U [withdraw!B (x) .P]
withdraw!U B−−−−−−−−→a ν l . (U [P{l/x}] | l .(B U ∅)) (l /∈ fn(P))

U [spend!BM c l] | l .(B U I) νs.spend!MB l s−−−−−−−−−−→a l .(B U I]{ s })

B[withdraw?U .P]
νl.withdraw?BU−−−−−−−−−−→a B[P] | l .(B U ∅)

B[deposit?M (x).P] | l .(B U I) deposit?BM l s U−−−−−−−−−−−→a B[P{rcp(l,B,U,s)/x}] | l .(B U I]{ s })

M[spend?B (x) (x1)(x2).P] | l .(B U I) νs.spend?MB c l s U−−−−−−−−−−−−−→a M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | (l .(B U I]{ s }))

M[deposit!B 〈l,s〉] | l .(B U I) deposit!MB l s−−−−−−−−−→a l .(B U I]{ s })

48 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

A[c?(x).P] | l .Cl
c ? rcp(l,B,U,s)−−−−−−−−→a A[P{rcp(l,B,U,s)/x}] | (l .Cl g l .(B U { s }))

To achieve the Balance property, an honest bank needs to tackle two issues, and this is where
the global coin states come into play.

– The adversary may try to fake a coin; we record all valid coins l at their withdrawal as
l .(B U ∅). A deposit of a coin is accepted only if the corresponding coin exists – it acts as
a proof of authenticity. The coin may have been already spent or still be empty.
For incompatible updates, the sup does not exist, so the rule does not apply.

– the adversary may try to spend the same coin several times.
The received transaction number must be either the same as already recorded by the coin
(if the spender is honest) or fresh. After deposit the coin goes to its final state and cannot
be spent or deposited any more.

When accepting a spend, an honest merchant must make sure that if the coin’s issuing bank
is honest then a corresponding empty coin is known to the system, otherwise a fresh coin is
created. A fresh transaction number is recorded in the coin in both cases. At deposit, the coin
goes to the final state.

Most of rules can be rewritten in a simpler form, by inlining the constraints on coins, for in-

stance the rule for deposit input can be rewritten as M[deposit!B 〈l,s〉] | l .(B U { s }) deposit!MB l s−−−−−−−−−→a

l .(B U { s }) . However we keep the constraints on coins separate so that we can take advantage
of the modularity of the rules to define the semantics of the intermediate level.

We have standard rules for sending terms, scope extrusion and receiving principal names.
As a sanity check, we verify that interactions with an abstract environment, represented by

a series of transitions, can also occur using reductions within an evaluation context.

Intermediate layer In the intermediate layer, the rules for spend input and output are
relaxed: instead of the strict preorder sup], the coin is updated with the reflexive closure g.

Synchronous versus asynchronous LTS We have a synchronous labelled semantics: for
example, an adversary can only spend a coin when the corresponding honest merchant is ex-
pecting a spend. Since the corresponding spend action has no continuation, contexts are weaker
than labels. We can change our semantics into an asynchronous one by splitting spend and de-
posit rules into two each: first the initiating message is buffered on the receiver’s side, and then
it is silently consumed by the receiver. assuming that the receiver of an asynchronous message
sends back to the expeditor an acknowledgement: this only happens for spends and deposits,
and it is reasonable to assume that merchants and banks are always willing to accept.

Our correctness results are phrased using trace equivalences, defined below.

Definition 3.3.2 (Trace Equivalence). Two systems are (weakly) trace-equivalent when their
labelled transitions have the same series of non-silent labels up to renaming.

Definition 3.3.3 (Observational Determinism). A system A is deterministic when, for all

transitions with the same non-silent labels A
φ−→ A1 and A

φ−→ A2, the two systems A1 and A2

are trace-equivalent.

Lemma 3.4. Observational determinism is preserved by transitions.

Proof: Suppose that A is deterministic, A
φ−→ A′, and A′ is not deterministic. Then, there are

ψ,A′1, A
′
2 such that A′

ψ−→ A′1, A′
ψ−→ A′2 and A′1 and A′2 are not trace-equivalent. Then A

φψ−−→ A′1

and A
φψ−−→ A′2 but A′1 and A′2 are not trace-equivalent which contradicts the determinism of A.

�

3.4. RELATED WORK ON THE USE OF AUDIT LOGS 49

3.3.5 Correctness results

We obtain an “optimistic security” result for e-cash and its log-based implementation. We
restrict configurations to observationally deterministic systems to avoid giving too much power
to the adversary.

We use the following notation: we write A
φ−→a for ∃A′, such that A

φ−→a A′ when the shape
of A′ is irrelevant for what follows. Let A ∼ A′ (resp., A ∼i A′) denote weak trace equivalence
for high (respectively, intermediate) level systems.

First, we formally define observable fraud – double-accept – as receiving evidence of double
spending. Honest equivalence is then defined as equivalence of systems modulo double-accepting.

Definition 3.3.4 (Double-accept and Honest Equivalence). Trace A
φ−→i accepts a coin l for

sale s, bank B, merchantM, and user U when spend?MB l s U ∈ φ, or deposit?BM l s U ∈ φ,
or ? (rcp(l,B,U,s)) ∈ φ.

Trace A
φ−→i double-accepts if for some l, s, s′,B,M,U , φ accepts l for sale s and φ accepts

l for sale s′ and the same principals B,M,U . Two systems are honestly equivalent, denoted

A ∼w A′, whenever for all φ such that A
φ−→i does not double-accept, A

φ−→i iff A′
φ−→i .

Lemma 3.5 (Trace lifting). For any initial high-level system A0, if A0
φ−→i does not witness

cheating, then A0
φ−→a .

The proof is by induction on the intermediate level trace φ. We use the fact that high-level
systems are a syntactic subset of intermediate systems.

We have a variant of optimistic security. On one hand we show that the intermediate
semantics simulates the high level semantics, modulo double-accepting (Theorem 3.6). On
the other hand, we show that when wrapped with our logged-based implementation, systems
eventually detect double-spending and identify and blame the fraudulent user (Theorem 3.7).

Theorem 3.6 (Optimistic equivalence). Let A0 and A′0 be two initial high-level systems.
We have

(1) A
φ−→a iff A

φ−→i does not double-accept;

(2) A0 ∼ A′0 iff A0 ∼w A′0;

(3) if A0 ∼i A′0 then A0 ∼w A′0.

Proof: (1) By induction on the abstract trace φ.

(2) (⇒) Suppose that A0
φ−→i does not witness cheating. Then A0

φ−→a by Lemma 3.5, A′0
φ−→a

by hypothesis, and A′0
φ−→i by (1). Finally, by symmetry, we get A0 ∼w A′0.

(⇐=) Suppose that A0
φ−→a . Then A0

φ−→i does not witness cheating by (1), A′0
φ−→i by

hypothesis, and A′0
φ−→a by Lemma 3.5. Finally, by symmetry, we get A0 ∼ A′0.

(3) ∼w is a restriction of ∼i to a smaller set of traces.
�

Theorem 3.7 (Detectability). Let A be a high level system. If when run using the intermediate

semantics A
φ−→i double-accepts then its translation [[[A]]] detects cheating.

The proof sketch can be found in Appendix C.2.

3.4 Related work on the use of audit logs

We give a short overview of other optimistic protocols, conjecture the properties of the logs
they are using, and discuss the existing implementation techniques for secure logs.

50 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

Fair exchange and non-repudiation protocols [Kremer et al., 2002] Fair non-repudiation
protocols must ensure that when Alice exchanges some data to Bob, either both Alice and Bob
can deny their participation in this communication, or both of them possess irrefutable evidence
of the other party’s participation. Ideally, Alice exchanges the message and the non-repudiation
of origin evidence against Bob’s non-repudiation of receipt evidence. The closest to what we call
an optimistic protocol are the protocols with an offline trusted third party (TTP). With this
approach participants only contact the TTP in case of cheating or network problem, so that it
reconstructs the missing evidence from the partial evidence available so far, or invalidates the
session.

Electronic voting Protocols for electronic voting are fairly complex and by their nature
require a form of trust from the voters; this requirement is often unrealistic. To this end
most of the voting protocols use optimistic subprotocols, for instance to generate the initial
cryptographic material for an election (the tallies).

Cut and choose principle in cryptography is inspired by the general fair division method
“I cut, you choose”. If Alice must use a secret piece of data which Bob must trust, she can
generate n fresh secrets, encrypt them and let Bob choose n−1 blindly. Then she discloses these
n− 1 secrets so that Bob can check that Alice did not cheat on these data. Then Bob assumes
that the last secret which Alice keeps encrypted to reuse it for later protocol needs is valid
and trustworthy. Otherwise Bob could have discovered the cheat by choosing it for verification,
with a big probability. All the n secrets must be committed to by Alice and revealed on Bob’s
demand. Thus Alice cannot replace values of Bob’s choice to hide her cheat.

3.4.1 Online games

Mental poker Mental poker [Shamir et al., 1981] allows playing a fair game between physi-
cally distant players without involving a trusted third party, it is particularly used in gambling
over the Internet. In electronic poker,or e-poker, for example, it is very difficult to guarantee
that the card drawn by each player will remain secret for others and honest, that the card deck
will be fairly random, and that each party has enough evidence to resolve a dispute that may
arise.

In the protocol proposed in Castellà-Roca et al. [2003] for e-poker, to achieve randomness
each player generates a random permutation of card and commits to it using commitment
scheme. The deck is composed from all players’ permutations.

The players’ reversed cards are encrypted during the game in such a way that the per-
mutations commute with encryption. Opening a card corresponds to its decryption. Early
commitment of the players’ permutations is important at the end of the game. Players then
reveal their encryption keys and their permutations for auditing.

NVE The optimistic approach with audit trails has been applied to networked virtual environ-
ments (NVE) by Jha et al. [2007]. Cheating in virtual reality games may include compromising
the game rules or changing the order of events after the fact. An NVE is composed by a server
which maintains the global game state, and clients who possess a partial view of the game.
Due to limited computational and bandwidth capacities of the server, it only maintains the
abstract global state, the concrete states are computed by the clients and the resulting abstract
updates are sent back to the server. Maintaining the consistence of the global game state is a
challenging task that the authors achieve with auditing. Along with the normal exchanges with
the NVE Server, each client regularly sends its hashed and timestamped concrete state to the
trusted Audit Server. The latter may initialize the audit procedure from one of these messages,
asking the client to send the whole concrete states corresponding to the hashes in order to make

3.4. RELATED WORK ON THE USE OF AUDIT LOGS 51

compliance verifications. Thus the semantic integrity of the NVE can be checked with a small
network overhead.

3.4.2 Multi-party protocols

Lockstep protocol has similarities with the multi-party protocol presented in Section 3.2.2.
Baughman and Levine [2001] study cheat prevention in decentralized multi-player games and
allow optimistic (vs conservative) event processing without rolling back. They identify several
kinds of attacks and their solutions comparable to those we are using for committed cells.

(1) Lookahead cheat: in the same round, a cheating player may wait to see the decisions
of all other players. A known solution is lockstep synchronization. All players first send
their commitments, and only then plaintexts of their decisions. The main drawback is
that the overall speed is that of the slowest player. An improvement to this solution
is asynchronous synchronization. Each player advances asynchronously until he enters
a sphere of influence of another player, then he runs the lockstep protocol to manage
possible interactions. We apply the same principle in our example game: no user reveals
his move before receiving the other players’ commitments from the server.

(2) Secret possessions: players may have secret data, that must have been acquired and
managed according to the rules. Cheat detection can be done using promises. Players
commit to their secrets, and announce them as promises (committed id capabilities for
committed cells), then open them. A distributed logger service records promises; a trusted
centralized observer service receives and dynamically checks data; a trusted centralized
promise service receives and checks promises and data. In our example the promise service
is implemented by the Resolution protocol.

Conservative protocols that could turn optimistic As opposed to the optimistic proto-
cols cited above, conservative protocol implementations are more frequent. However they could
gain efficiency if some of their runtime checks could be deferred.

Another example of distributed pessimistic application is the Jif/split compiler [Zheng et al.,
2003]. Given some Java-like sequential code in which each piece of data is annotated with its
security level (for instance, high or low) together with the trust level specification for each host
available, Jif/split partitions securely the provided code over the given set of heterogeneously
trusted hosts. When there is no host with enough integrity to store a high integrity variable, the
code is replicated. For example, a variable which both Alice and Bob trust cannot be handled
neither on the host H1 trusted only by Alice, nor on the host H2 trusted only by Bob. However,
it is possible to replicate the code over both the hosts H1 and H2 (the secrecy components of the
security label should be taken into account as well: hosts which do not ensure enough secrecy
only keep the hash replicas of the variable). The code is then run in parallel on both of the
hosts and the results are compared. As Alice trusts H1 and Bob trusts H2, if both hosts agree
on the result then both Alice and Bob can trust the result and the integrity of the replicated
variable is respected. Interestingly, the protocol automatically generated by the splitter to share
a variable between replicas is similar to value commitment: secret values are hashed when sent
to untrusted parties.

With the optimistic approach, this high integrity variable can be located on either of the
half-trusted hosts and thus need not be replicated since all the transactions are securely logged.
For instance, the computation on the shared variable may take place on the host H1 which is
only trusted by Alice. The necessary condition is that the computation is recorded in a secure
log that Bob can access and check. The code is only run once and the verifications are done at
Bob’s request, so that the application gains efficiency.

52 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

3.4.3 Implementations of secure audit logs

The security of audit logs implementation is crucial. Some of the common security require-
ments for log systems are listed below; Other desirable high-level properties, as well as a formal
framework for validating existing log systems, applied to examples, are described by Etalle et al.
[2007].

– Correctness should ensure that if we log some data an entry corresponding to the data
will be added correctly to the log.

– Forward integrity [Bellare and Yee, 1997] of an audit log guarantees that once logged,
an entry will not be corrupted even if the machine get compromised, or, any past ev-
idence cannot be erased by an intruder. This notion subsumes tamper resistance and
verifiability [Waters et al., 2004].
– Tamper resistance implies the inability of an attacker to create valid log entries or to

alter the existing ones. In practice, one cannot help deleting log entries but can detect
it.

– Verifiability allows a public or trusted verifier to check that all created log entries are
present and valid.

– Forward secrecy is often required when sensible data is logged. It guarantees that en-
cryption used to protect the content remains valid after an attacker’s intrusion in the
system.

These requirements could be met easily by using a physically secure and tamper-resistant
machine trusted by all the participants (called “trusted third party”, or TTP, in what follows).
Forward integrity is often achieved by remote logging to a host hardly reachable by the intruder,
or by log replication thus multiplying sources of evidence which the intruder aims to erase.
Another technique is to record the log entries on some kind of write-once-read-multiple physical
device, or sending them to a secure printer. It is however essential to minimize the dependence
on trusted parties in a log system. Instead, cryptography allows to guarantee many of these
properties; we briefly present some secure log implementations. We use similar but simpler
techniques in our formal implementation of committed cells.

Schneier and Kelsey [1999] propose a system where the attacker cannot seamlessly
alter or delete log entries made before the logging machine is compromised. They assume the
availability of a trusted third party. Before starting a new log the machine establishes a shared
secret key A0 with the TTP. The key Ai+1 is obtained by incremental cryptographic hashing of
Ai; Ai is deleted immediately after. If the machine is compromised while using the key Ak, the
intruder is still unable to find the keys Aj for all j < k and so to tamper with the corresponding
entries. Then each i-th piece of data Di to be logged is encrypted with a key Ki derived from
Ai for the data type of Di, thus a user in possession of Ki cannot alter the entry but just read
it. The resulting bitstring is recorded as the i-th log entry. This key management guarantees
tamper resistance of the scheme.

To obtain verifiability and bind all log entries, a hash chain Yi for the entry i is computed
as the cryptographic digest of the encrypted data concatenated with Yi−1. Each record is also
protected by the MAC of the hash chain under the key Ai. Even an untrusted user can thus
check the validity of the hash chain. To access the log, a user addresses a request including
an index range and the corresponding access permissions to the TTP. After an authorization
check, the TTP issues the decryption keys corresponding to the requested log entries.

Xu et al. [2005] adopt a client-server architecture where the server has access to a trusted
computer base (TCB). Initially, the TCB contains two pairs of public/private keys for encryp-
tion/decryption and signing/verifying, and a random number RN. The server adds the clients’
log requests to the log as follows. A log file starts with RN, the name and the signature of
the previous log file. Each record includes a sequence number, the identifier of the author,
the client’s data as cleartext, and the secure hash of the record computed using RN. At any
time TCB contains the current sequence number and the plain accumulated hash of the log file

3.5. CONCLUSIONS AND FUTURE WORK 53

(PAH) to guarantee the verifiability. The PAH and its signature using the server’s private key
and server’s public key are written at the end of the file. If restarted, the server can complete the
last opened log file by checking the sequence numbers and PAH of all records. The validation
of the file consists in simply checking the final signatures. This scheme shifts the basis of trust
from a trusted third party to the trusted computer base of the server.

In practice it is useful to be able to find the log entries satisfying some criteria. In addition to
secrecy and forward integrity properties, Waters et al. [2004] design a log system that provides
searchability. The authors use identity-based encryption with extracted keywords to allow
search actions on the encrypted log data.

3.5 Conclusions and future work

An optimistic approach to security offers several advantages over classical, conservative
security schemes for protocols. Applications gain in efficiency by performing the necessary
checks only at the end (possibly saving a large number of intermediate communications) and
the enforced policies can be made more flexible (possibly improving the confidentiality of the
computation). However the formal properties of log-based implementations are more delicate
to formalize, and weaker than those of the corresponding pessimistic protocols. Therefore they
should be implemented with particular care, the most important question being whether the
evidence they log is sufficient to satisfy the claimed properties.

The results of our study of value commitment and offline e-cash schemes involve stating and
proving a novel property relating the labelled traces of an abstract semantics to those of their
realistic implementation: optimistic security – at every step, an optimistic implementation must
either simulate the behaviour of the abstract model, or an illegal action happens and then it
will be detected and punished.

Value commitment Our implementation of optimistic commitment has the advantage of
simplicity, using only ordinary communications and standard symbolic cryptography: we use
hashes to ensure secrecy of the committed value, and public-key signatures to bind a cell to the
identity of a principal. We only consider authenticity for now, but we believe it would also be
possible to guarantee some properties of formal secrecy.

Although committable cells provide a reasonably useful (and formally challenging) block for
building protocols, we focused on one particular usage of secure logs, rather than proposing
a comprehensive language design for optimistic protocols. Our formal approach proved to be
extensible to other, more involved datatypes—as long as we can represent their live cycles using
a preorder on exported capabilities, as detailed in Section 3.2.4.

E-cash We experimented with a similar but quite different scheme, offline e-cash. This time
we used an existing cryptographic implementation [Camenisch et al., 2005].

We believe that this work brings two benefits. First, our formal semantics seems general
enough to faithfully model the properties of offline e-cash protocols; we do not retain any
implementation-dependent feature in our design. A possible future work in this direction is
applying our approach to such e-cash protocols as Camenisch et al. [2007b]. Then, our approach
to relating the low-level implementation and the abstract semantics seems useful to explore
properties of other complex protocols, such as e-voting.

Our case studies thus provide a first step towards a better understanding of the usage of
audit logs and similar mechanisms.

54 CHAPTER 3. THE USE OF LOGS WITHIN OPTIMISTIC PROTOCOLS

Chapter 4

A general definition of auditability

4.1 A language-based approach to auditing

Consider the mail authentication protocol from Section 2.2.1, where A wants to send an
authenticated mail to B:

A −→ B : authentic(text ,A)

To prove her identity, A can sign the message using her secret signing key and append the
signature to the message.

A → B : text | {text}skA
The server B can verify the signature using A’s public key and, if the test succeeds, B can be
sure of the authenticity of the message. But, in case of dispute between A and B, does B possess
enough evidence to prove authenticity to a third party?

We say that a protocol is auditable with respect to a property if it logs enough evidence to
convince an impartial third party, called a judge, of that property.

In our example, A’s text and signature, if securely stored by B, constitute sufficient evidence
for auditing. Later, a judge can take a decision upon verifying the signature and, inasmuch as
all principals agree on the public key infrastructure for signing, they also agree that this judge
is impartial. Note that the signature alone may not constitute sufficient evidence: a careless
server that discards or alters the received text would not be able to convince the judge.

Suppose now that, instead of signing the text, A signs a fresh key k, encrypts it under B’s
public key, and encrypts the text under k using non-malleable encryption

A → B : {k|{k}skA}pkB | {text}k

In this case, B can decrypt and authenticate the key k, then decrypt the message, and infer
the authenticity of text. However, an impartial judge cannot attribute the message to A, since
both B and A are able to encrypt data using the key k; the authenticity of text for A is not
auditable. (For mail, this feature is often called deniability [Roe, 1997].)

The concept of auditability is entangled with the figure of the judge. A judge is an entity that
evaluates if some evidence enforces a given property, in an impartial and transparent manner.
Thus, its decision procedure must be relatively simple, and it must be known and accepted a
priori by all principals concerned by the auditing. Conversely, the principals do not trust one
another to comply with the protocol definition.

Similarly, fair non-repudiation protocols rely on trusted third parties (TTPs): for each
message, evidence of its origin and receipt of its dispatch is collected by the participants and
this evidence can be passed to the TTP to resolve disputes [Kremer et al., 2002]. Judges are
similar to offline TTPs: they are invoked a posteriori, only when necessary. However, judges
never issue their own signatures (unlike for instance transparent TTPs), nor actively participate
in the protocol (for instance by sending messages to the participants).

55

56 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

In practice, most applications selectively store information, in audit logs, about why au-
thorizations were granted or why services were provided, with the hope that this data can be
later used for regular maintenance, such as debugging of security policies, as well as conflict
resolution. However, deciding which evidence should be logged to enable reliable and efficient
auditing is left to the programmer’s intuition. As shown above, it is not the case that all prop-
erties that can be verified by a principal at run-time can be audited by an external judge. Even
considering only properties that can be audited, it is unclear if some given evidence enforces
them. Besides, extensive logging may conflict with other security goals, such as confidentiality
and privacy.

This chapter proposes a formal definition of auditable properties (Sections 4.2 and 4.3),
illustrates our definition on several sample protocols (Section 4.4), and discusses related work
in Section 4.5. In the following chapters we will build on this definition, and we will study how
types can be used to check if a property is auditable in a program.

4.2 Modelling security protocols in F7

We aim to verify concrete protocol implementations, rather than their abstract models, so we
represent protocols as programs written in F#, a dialect of ML, and we specify their properties
using logical formulas. In Section 2.4 we reviewed RCF, the formal core of the language F#
and of the associated F7 type system.

A protocol can be written in F# as a collection of functions that represent compliant code for
the different roles, possibly sharing some variables (such as cryptographic keys). This collection
of functions and variables can be structured into modules; the module interfaces are then made
available to the environment, which can run, and interact with, the roles. The environment
models an active attacker; it is a priori untrusted and should not access some of the shared
variables (such as private keys). In F# the visibility of variables is specified in typed interfaces;
variables which are not exported are marked as private.

A protocol, denoted 〈L, IL〉, is a module that defines the corresponding global variables and
the roles, and its typed interface. We denote public(IL) the set of values that are exported to
the adversary, and private(IL) the other values. An opponent, denoted O, for a protocol is an
expression that does not contain any assert (and audit, defined later) and whose free variables
cannot be bound to variables not declared in the public interface of this protocol. A program
is a closed expression of the form L[O] where L defines the global variables and roles and O is
an opponent (as such, it holds that private(IL) ∩ fv(O) = ∅).

To illustrate our setup, in Figure 4.1 we program the authenticated mail of Section 2.2.1
relying on RSA public-key signatures. We call the corresponding module Lmail and its interface
Imail. We omit the standard library modules LData, LCrypto and LNet it depends on. The
interface Imail exports both roles and A’s public key; the secret key is not in the public interface
of the protocol to prevent the environment from signing messages.

public(Imail) = {pka, princA,princB}

The code first defines the secret key ska and the verification key pka for principal A. The
principal A, implemented by princA, establishes a TCP connection c to some predefined port p,
creates a signed message and sends it over c. The principal B, implemented by princB, receives
the message and its signature, and verifies if the signature is valid for the message issued by
A. The predicate ASent(x) encodes at the logical level that the principal A sent the message
x. Since the principal A is compliant, all the other participants trust her to add ASent("Hey")
to the set of valid formulas using the assume primitive. If the signature verification succeeds,
then B can expect this property to hold unless the secret key of A has been compromised (so
it is now public: Pub(ska)). This is specified by asserting the predicate AMightSend(x) which
abbreviates the disjunction of these.

4.2. MODELLING SECURITY PROTOCOLS IN F7 57

Figure 4.1: Code for the example 2.2.1

let ska = rsa keygen()
let pka = rsa pub ska

let princA () =
let c = Net.connect p in
let text = utf8 (str "Hey") in
assume (ASent(text));
let s = rsa sign ska text in
let w = concat text s in
Net.send c w

let princB () =
let c = Net.listen p in
let w = Net.recv c in
let (m,s) = iconcat w in
if rsa verify pka m s then

(assert(AMightSend(m)); m)
else failwith "Bad signature"

assume ∀m. AMightSend(m) ⇔ (ASent(m) ∨Pub(ska))

Pinpointed expressions To formalise auditability we need to track precisely the substitutions
that are applied to some sub-expressions of a program. Technically, we extend the syntax of
expressions with pinpointed expressions, denoted Aσ, where σ is a finite substitution of values
for variables. The definition of substitution used for evaluation is then modified to extend σ
rather than propagate through A:

(Aσ){M/x} = A(σ; {M/x}) .

Once a pinpointed expression gets in head position inside an evaluation context, the deferred
substitution σ is applied to A, resuming the computation via the rule Aσ → Aσ. Just before this
reduction, σ contains exactly the substitutions applied by the context to the sub-expression A.
It is easy to see that the expression A and the expression obtained by replacing a sub-expression
A′ of A with A′ (a pinpointed expression with an empty substitution) reduce to the same value.

We recast the definition of RCF safety using pinpointed assertions:

Definition 4.2.1. The formula C is safe in the program A[assert C] when, for all reductions

A[assertC]→∗ E[assertCσ]

where E is an evaluation context with assumed formulas F , we have F ` Cσ. A program is
safe when all its assertions are safe. A protocol L is robustly safe if, for all opponents O, the
program L[O] is safe.

Note that when assert is evaluated the substitution σ records the actual values for the free
variables of the formula C.

For example, using the protocol Lmail, the program Lmail[princA () �princB ()] is safe. The
only occurrence of assert is in the code of princB, and it is evaluated after reception of the
message over the connexion established on port p. Only princA sends a message through this
port, with content "Hey", and only after assuming ASent("Hey")}. These reductions lead to a
configuration

E
[
assert (AMightSend(text)){"Hey"/text}

]
with multiset of assumed formulas F = {ASent("Hey"), ∀m. AMightSend(m)⇔ (ASent(m)∨
Pub(ska)) }, so we have F ` AMightSend("Hey"). Since the private key of A is neither exported
statically nor leaked dynamically by the protocol, it can proved as a theorem that the key
remains secret in all protocol runs. So B can assert a stronger property: ASent(text).

More interestingly, Lmail is also robustly safe. Since robust safety quantifies over all envi-
ronments that interact with the protocol, we might imagine a malicious opponent that after
launching princB establishes a connection on port p and sends the message ("Hey"|"bleah").
However, the signature verification performed by B guarantees that the received message has
been sent by A, and in turn that the formula ASent("Hey") has been previously assumed.

58 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

4.3 A definition of auditability

Informally, a program is auditable if, at any audit point, an impartial judge is satisfied with
the evidence produced by the program.

We extend RCF with the primitive audit C M :

A ::= expressions
. . .
audit C M audit formula C using evidence M

This allows the programmer to specify the program points that require auditing for property
C, using the value M as evidence. In practice, although we do not enforce it, the evidence M
should be safely logged by the program. Similarly to assert, this primitive plays a role only in
the specification of properties: audit C M always reduces to unit.

To simplify the presentation, we focus on programs with a single audited property, a single
judge, and a single audit request point. Let C be this property, and suppose that fv(C) = x̃. Our
definitions generalize easily to several distinct properties and audit requests, possibly sharing
the same judge.

We represent the judge as a function, named judge, taking as arguments the actual values of
the free variables of C and the evidence, and evaluating a boolean expression J that computes
the judge’s decision. The judge function in a protocol should be defined by a public binding
of the form let judge x̃ e = J . For sanity, we require that J does not assume any property or
access any private binding of the protocol.

Auditability for the authenticated mail We already suggested that in the authenticated
mail example the property AMightSend(m) is not only safe but also auditable. For a given
text sent by the client (e.g. "Hey"), the associated signature constitutes the evidence to enforce
the property AMightSend(m){"Hey"/ m}. We can then replace the assert (AMightSend(m))
executed by princB with the audit request audit (AMightSend(m)) sign. In this example the
PKI is trusted by all participants: a judge that, given a text and a signature, returns true
if and only if the signature is valid can be deemed impartial (or correct). Observe that the
signature always suffices to convince the judge: we say that it constitutes complete evidence.

The key property that distinguishes auditing from asserting properties, is that the judge
can be called in any context where the public key of the client is known: for instance, a third
party can invoke the judge to confirm the outcome of the transaction.

We can update the code of the authenticated mail protocol and add the definition of the
judge.

let judge text e =
verify sig pka text e

let princB () =
let c = Net.listen p in
let w = Net.recv c in
let (m,s) = iconcat w in
if rsa verify pka m s then

(audit (AMightSend(m)); m)
else failwith "Bad signature"

The judge function just validates the signature passed in as evidence. As discussed above, it is
correct for the property AMightSend(m). The audit (AMightSend(m)) sign statement executed
by princB succeeds if the evidence sign suffices to convince the judge, as is the case here. Thus,
the property AMightSend is auditable in this example. The principal princB then publishes the
evidence on the channel d.

Auditability, formally Given a program L[O], we rewrite it as a two-hole context applied
to the body J of the judge (let judge x̃ e = J) and to the evidence M provided in the audit

4.3. A DEFINITION OF AUDITABILITY 59

statement. With a slight abuse of notation we denote it as A[J,M]. Our definition says that
a (well-formed) program is auditable for a property C if it defines an impartial judge for C
(correctness), and if the evidence provided in the audit call suffices to convince the correct
judge of the validity of the property (completeness).

Definition 4.3.1. Let 〈L, IL〉 be a protocol with a (public) declaration let judge x̃ e = J and
a statement audit C M in its scope. Let O be an opponent such that private(IL)∪fv(O) = ∅.
Let A be a two hole context such that A[J,M] = L[O]. The program L[O] is auditable when

(Well-formedness) (a) the declared variables of L are not rebound; (b) J does not contain
assumes. (c) fv(J) ∩ private(IL) = ∅;

(Correctness) if A[J,M]→∗ E[Jσ] for some evaluation context E with assumed formulas F ,
and Jσ →∗ true, then we have F ` Cσ; and

(Completeness) ifA[J,M]→∗ E[Mσ] for some evaluation context E, then we have Jσ{M/e} →∗
true.

The protocol 〈L, IL〉 is auditable when the program L[O] is auditable for all opponents O.

Let us illustrate the definition above for the authenticated mail protocol, with some opponent
code that receives the audit evidence on channel d then invokes the judge:

Lmail[princA () � princB () � (let text,e = recv d in if not (judge text e) then "bad")]

With this particular opponent, the judge is called after the server successfully completes, and
thus after the client’s assume, so the judge is correct when it returns true. The evidence is
also complete: at the audit point, if we pass the actual evidence to the judge we get

(verify sig pka text sign)σ

for some substitution σ that substitutes "Hey" for text, the result of rsasha1 ska text for sign, a
cryptographic function for verify sig, and a matching keypair for ska and pka. This expression
reduces to true by the definition (and the F# implementation) of the verification of asymmetric
signatures.

In some cases the conditions required for correctness can be trivially satisfied. A judge that
always returns false is correct; however in this case no evidence can satisfy the judge, and thus
the protocol cannot be complete. Also, if the judge is not called, then correctness is vacuously
satisfied. Correctness and completeness are complementary properties: giving evidence to an
unreliable judge makes no sense, nor does conducting a trial with insufficient evidence. Note
that a judge is correct if and only if it is safe to assert the audited property whenever the judge
returns true.

Extending the definition for multiple properties/audit points There is one judge func-
tion per auditable property. If there are several audit requests for the same property, Defini-
tion 4.3.1 applies for each of the audit requests in turn, while the other requests audit C L
are replaced with assert C. If there are several auditables properties, Definition 4.3.1 applies
independently for each of them. So there must be a judge function defined for each property,
and one or several audit requests which have to be handled as described above. Audit requests
for other properties can be safely replaced with asserts when applying the definition for one
particular property.

Syntactic convention The current implementation of F7 does not support pattern-matching
on formulas. To circumvent this syntactic restriction in the code snippets we write ad-hoc
functions to embed the audit requests; so we write auditPredicate x̃ evidence rather than audit
Predicate(x̃) evidence. Accordingly we name the corresponding judge function judgePredicate.

60 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

For our formalization (Section 5 particularly) we continue using the abstract audit primitive,
and consider a single auditable property and a single audit request.

Opponents and partial compromise The environment models a potentially hostile attacker,
which can access all public values and roles of the protocol, the cryptographic library (to model
its knowledge of the cryptographic algorithms), and to the network (to model the control of
communications by active adversaries). In addition, an attacker may corrupt a subset of the
principals to gain access to their private resources (like signing keys). Interestingly, in this case
the remaining compliant principals may remain auditable: a signature by a principal, compliant
or not, constitutes audit evidence.

Compromised participants can be represented in our setting by extending the protocol with
definitions that export their private resources. Suppose that, in the authenticated mail example,
A is compromised. Its secret key becomes public and is typed as ska:key{Pub(ska)}, and the
code below is added to the end of the protocol:

let leaked key = assume (∀x. ASent(x)); ska

The attacker can now choose any message and sign it with A’s signature:

let bad text = utf8 (str "Bleah") in
send c (bad text, rsa sign leaked key bad text)) � princB ()

The compromise of A must be reflected in the logical world. The meaning of the formula
ASent(x) was that “principal A sent message x”, and it was possible to certify this action by
verifying the relevant signature. However, now arbitrary messages sent by the attacker can be
signed with A’s key. The assume (∀x. ASent (x)) evaluated just before exporting the private
key of A captures this fact. In general, before exporting the private resources of a compromised
participant, it is necessary to either “saturate” all the properties related to the compromised
participant, as done here (in a modal logic, this would be equivalent to assuming the formula
A says false [Fournet et al., 2007]) or assume some compromise at the protocol level. Observe
that, in a protocol run where A was compromised and the environment issued the attack above,
if an audit for the property ASent(bad text) is requested, then the server can still provide enough
evidence to the judge: the protocol is still auditable.

An attacker might also invoke directly a judge and provide some bogus evidence to accuse
a compliant principal. However, Definition 4.3.1 states that a judge is correct only if it always
takes the right decision, independently of the origin of the evidence. So, this attack is deemed
to fail.

4.4 Auditability, illustrated

Definition 4.3.1 encompasses the properties of our target examples, but also rules out non-
auditable properties.

4.4.1 Naive (non-auditable) mail

For non auditable protocols there is no such judge function that is correct and complete.
We illustrate this using the naive mail protocol, which is neither auditable nor authentic.

A → B : text

The protocol may be written as L:

let roleA txt = assume Auth(txt); send c txt
let roleB () = let txt = rcv c in audit Auth(txt) txt

Formula Auth(txt) models the authenticity of the message. The audit request at B’s side collects
all the received evidence, here txt.

4.4. AUDITABILITY, ILLUSTRATED 61

Proposition 4.4.1. The protocol Lnaive is not auditable for property Auth(txt).

Proof: Suppose that there is a function let judge x e = J such that Auth(txt) is auditable for
the protocol L′ = (let judge x e = J L).

(1) First, we consider the following opponent run:

L′ (roleA "Yes"� roleB ()) →∗ (assume Auth("Yes") � audit Auth("Yes") "Yes").

By completeness, we have that J{"Yes"/x,"Yes/e} →∗ true.

(2) Now, consider a different opponent run:

L′ (roleA "No"� roleB () � (let = rcv c in let x,e = "Yes","Yes" in send c x; J))

→∗ (assume Auth("No")� audit Auth("No") "No" � J{"Yes"/x,"Yes"/e})
The judge is called in the same configuration, as in (1), except for the assumed formulas

which are irrelevant for the reduction semantic so, so from (1) we know that

J{"Yes"/x,"Yes"/e} →∗ true.

By the assumed correctness of the judge Auth("Yes") must hold, however it does not. We
obtain a contradiction, so Auth is not auditable for this protocol. �

4.4.2 Rock-Paper-Scissors

We consider a simple implementation of the Rock-Paper-Scissors protocol (described in 2.2.2)
where the bid authentication is achieved via RSA signatures (term proof is an RSA digital sig-
nature). A trusted server organizes a game between A and B who run the role princ parametered
with their identity, the port number used to communicate with the server and their bid.

type bid = Rock | Scissors | Paper

assume (Beats(Rock,Scissors))
assume (Beats(Scissors,Paper))
assume (Beats(Paper,Rock))

assume ∀p,x. MightSend(p,x) ⇔
(Sent(p,x) ∨Bad(p))

assume (∀p1,p2,x1,x2. (MightSend(p1,x1) ∧
MightSend(p2,x2) ∧Beats(x1,x2)) ⇒Wins(p1
))

assume ∀p,b,x. SendFrom(usage,p,b) ⇔
(Sent(p,x) ∧BytesOfBid(b,x))

let beats x y =
match x with
| Rock → y=Scissors
| Scissors → y=Paper
| Paper → y=Rock

let judgeWins w (ma,sa,mb,sb) =
let ba = bid2bytes ma in
let bb = bid2bytes mb in
if rsa verify prin usage alice pka ba sa
then if rsa verify prin usage bob pkb bb sb
then begin

assert(MightSend(alice,ma));
assert(MightSend(bob,mb));
if beats ma mb then w=alice
else if beats mb ma then w=bob else false

end

let princ p port bid =
let c = Net.connect port in
let text = bid2bytes bid in
assume (Sent(p,bid));
let sk = getPrivateKey usage p in
let s = rsa sign usage p sk text in
let w = concat text s in
Net.send c w

Sum type bid ranges over possible bids: Rock, Paper or Scissors; injective functions bid2bytes
and bytes2bid allow un/marshalling.

Predicate Beats(x,y) records that bid x beats the bid y. The usual game rules are specified
as assumptions trusted by all participants. Although all formulas in our examples so far are just
facts (representing protocol events), in general formulas also include policy rules. Predicate Sent
(p,x) records that a player p made the bid x; predicate MightSend(p,x) abbreviates the weakened
version of this, considering the compromise of the principal p. The main rule for recognizing
a victory of a principal, denoted with predicate Wins(p), states that this principal must have

62 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

made a bid, and another principal must have made a weaker bid. Note that formulas like Sent
are just facts representing runtime protocol events, while formulas like Beats are policy rules.

During the protocol both players send their signed moves to the server who determines the
winner. We show that the victory Wins claimed by the server can be audited. Intuitively, a
judge needs the moves, together with their signatures, for both players, to decide if the proposed
winner actually won the game.

The judge will be called in a context that assumes the global rules of the game. To be
correct, its decision must respect these rules. The judge returns true only after verifying the
move signatures (which in turn guarantees that the properties Send(alice,Paper) and Send(bob
,Rock) holds), and w is the player who played the winning move (computed by the function
beats). So the judge is correct for the property Wins. Alternatively, the only audit request
occurs after the verification of the signatures passed as evidence and calling the function beats.
So we have both correctness of the judge and completeness of the provided evidence.

4.4.3 Value commitment

In Section 3.2 we showed how to audit write-after-commit cheating in the implementation
of committable cells. Committed id and rd capabilities are represented with records including
the relevant cryptographic fields.

type idc = {ownidc:prin; hidc:bytes; sigidc:bytes}
type rd = {ownrd:prin; id:id; value:value; sigrd:bytes}

The auditable property of this schema is “Principal p is guilty of multiple-commit of a cell”,
expressed as predicate MultCommit(p). Predicate HAssign(p,hid,hv) records the intention of
principal p to commit to some value v in cell c, which corresponds to the resulting committed
id capability containing an hashed value hv for the hashed identifier hid. To reliably verify this
property, it is sufficient to be given two committed id capabilities belonging to this principal,
for the same cell and check that they are related to the same cell, are well-formed and have
different contents. The main rule for blaming and the code of the judge are shown below:

assume ∀p,id,v,v’. (HAssign(p,id,v) ∧HAssign(p,id,v’) ∧ v 6= v’) ⇒DoubleSpent(p)

let check idc i =
let vkp = getPublicKey usage i.ownidc in
rsa verify prin usage i.ownidc vkp i.hidc i.sigidc

let judgeMultCommit p (cap1,cap2) =
let = getPublicKey usage cap1.ownidc in
let = getPublicKey usage cap2.ownidc in
if cap1.ownidc = p then
if cap1.ownidc = cap2.ownidc then
if check idc cap1 then
if check idc cap2 then
let (h1,h1’) = iconcat cap1.hidc in
let (h2,h2’) = iconcat cap2.hidc in
if h1 = h2 then
if h1’ 6= h2’ then true
else false

We can then show that the distributed resolution process blaming a principal is auditable for
this judge function.

Independently, we can show that the authenticity of a cell content in this implementation of
value commitment is auditable. The judge function simply checks the signature of the owner,
given the identity, the content, and a committed capability (read or committed id) of the cell.

4.5. DISCUSSION AND RELATED WORK ON AUDITABILITY 63

4.5 Discussion and related work on auditability

“Positive” and “negative” properties As the value commitment example illustrates, the
same program may have several audit goals of different kinds. Standard – pessimistic – protocols
use logs as an additional means to validate their security and make it provable to third parties.
The auditable properties often express “positive” statements: a participant obeyed the game
rules, the decision taken by a participant is fair, etc.

Optimistic protocols usually rely on logs for cheat detection, so their auditable properties
have a “negative” flavour and may express the correctness of the cheat detection procedure. In
turn, correctness properties of the protocol itself are often disjunctions of the desired property
when all participants behave honestly, and of the blame in case a principal behaves dishonestly.

Non cryptographic evidence Even if typical evidence includes some collection of signed
data, the judge does not necessarily rely on cryptography. To audit the arithmetic property
“2n − 1 is not prime”, with two integers as evidence, a correct judge simply checks that these
integers are greater than 1 and their product is equal to 2n − 1. Similarly, if an access control
database is trusted by the judge and by all principals, then the compliance of granted or denied
accesses can be verified against the corresponding database entries, and no evidence must be
provided.

Auditability versus other security properties As the introductory mail example illus-
trates, authenticity does not entail auditability in general, though auditability often subsumes
authenticity (intuitively, audit C L can always be safely replaced with assert C).

Some properties, like deniable authentication in the second example of Section 4.1, cannot
be audited. (Note that a weaker property which is the disjunction saying that either A or B
sent the message can be proved). In general, all deniable properties are not auditable, and all
auditable properties are undeniable (luckily properties enforced by most of the protocols are
neither deniable nor undeniable).

Privacy and secrecy constraints often conflict with auditing; it is well-known that “if logs
mention private information they are forbidden and if they do not – they are useless” [Etalle
et al., 2007]. For instance, if x is secret, then a property C where x appears as cleartext (in
the property or in the evidence) cannot be audited. Protocols using zero-knowledge proofs
in particular constitute an interesting source of auditable properties. Peha [1999] proposes a
system design for electronic commerce where privacy of customers is taken into account to some
extent; information on their transactions is only available to the system auditors, and not to
the other parties. For some cases, this concession is though inacceptable.

Accountability is a related, and in some cases synonymous security property; we discuss it
in the rest of this section.

Accountability for optimistic security enforcement The use of logs for optimistic se-
curity enforcement has been advocated in earlier work [Cederquist et al., 2007, Etalle and
Winsborough, 2007]. The work closest to our is by Cederquist et al. [Cederquist et al., 2007];
they develop an audit-based logical framework for user accountability, specialized for discre-
tionary access control. They also design cryptographic support for communication evidence in
a decentralized setting [Corin et al., 2006]. In their framework, all auditors (judges) are based
on a sound and complete proof checker, and are correct in our sense. However, principals must
rely on a tamper resistant logging device to prevent a malicious agent from forging a log entry.
In comparison, we delegate the integrity and authorization checks to the code of the judge.
Their framework defines whether an agent is accountable for a given run, and hints that if an
agent logs all relevant evidence before each action (following an honest strategy) then all of its
run will be accountable.

64 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

Etalle and Winsborough [2007] propose a logical framework relying on logs that embeds
a trust management system for mapping agents to roles. Auditability of a principal for an
action implies that the principal is able to prove the compliance of his action with respect to
the current policies. Accountability of a user refers to his legitimacy and susceptibility to the
eventual punishment. Agents are required to check whether the action they are going to perform
complies to the current policies (auditability) and log the corresponding evidence. In particular,
all communications, creating and sending a document must be logged. Receiving a document
requires checking that the sender is trustworthy : auditable and accountable.

Related work on secure provenance [Hasan et al., 2007] allows to reliably determine the
origin of data (for instance, the place of residence of a cow that has mad cow disease can be
used to track down the source of propagation). A provenance certificate is a standalone set
of records that includes cryptographically encrypted or signed data and keying material, and
provides integrity and selective secrecy for the data . Both audit trails in our approach and
provenance certificates can be seen as proof verifiable out-of-context.

Accountability from protocol perspective Küsters et al. [2010] propose a general defini-
tion of accountability for cryptographic protocols both in symbolic and computational models.
A judge (auditor) is a an agent that states verdicts on protocol runs. A verdict is a logic comib-
ination of propositions recording the blame of principals. An accountability property Φ is a
set of verdicts when the protocol run satisfies some trace property. A judge ensures symbolic
Φ-accountability for a protocol if

– (fairness) the judge’s verdicts are never false, in all runs
– (completeness) in all traces satisfying an accountability property from Φ, and in all runs,

the verdict of the property holds.

This definition is also centered around guilt, rather than proving generic properties. Unlike in
Definition 4.3.1, fairness says that the judge must be correct for all properties (in our case it
only says “yes” or “no” for a given property). For completeness, the accountability properties
Φ embed the execution trace of the protocol at the point where the verdict is stated by the
judge. We put the audit request points directly in the code, thus also quantifying on all possible
executions of the protocol.

Jagadeesan et al. [2009] propose a framework for design and evaluation of accountability
systems with authorization security goals. Compliant behavior of system users is specified
using CSP based processes. Illegal traces are those which cannot be produced by compliant
(honest) processes, and principals issuing them are said to be dishonest. In this authorization
setting, illegally sent messages constitute crimes, and auditors merely trace their provenance.
An auditor is defined as ordinary honest principal, who can receive audit requests, and ask other
principals to justify their actions, in order to decide which principal to blame, accordingly. An
auditor may enjoy the following properties:

– (liveness) a non-empty set of agents is always blamed;
– (correctness) (1) Upper bound: every guilty agent is blamed; (2) Overlap: at least one of

the blamed agents is guilty; and (3) Lower bound: every blamed agent is guilty;
– (blamelessness) honest principals can avoid being blamed.

Their definitions is built around the notion of guilt, while our definition allows an auditor
to take any kind of decision (and in particular to determine the guilt of a set of agents, thus
implementing one of the flavours of correctness). Practically, if the communication channels
between the auditor and the agents do not provide non-repudiation and if no trust assumptions
are made on agents, auditors can at best enjoy the Overlap correctness (some of the blamed
agents are guilty). Using trusted third parties (notaries) allows to recover the Lower bound
correctness (all blamed agents are guilty).

4.5. DISCUSSION AND RELATED WORK ON AUDITABILITY 65

Accountability from operating systems perspective Much work has been done on how
to use logs to track faulty behaviours of nodes in distributed systems.

Yumerefendi and Chase [2005, 2004] advocate the importance of accountability in depend-
able distributed systems. Problems arising from the heterogeneity of system trust assumptions
across different sites can be dealt with by integrating accountability concerns in the design. The
authors suggest that the actions and state of each agent (node) are undeniable, tamper-evident
and certifiable (verifiable by an auditor). An auditor, like in our setting, may require an agent
to prove the correctness of its actions.

PeerReview [Haeberlen et al., 2007] implements accountability for distributed systems.
Nodes composing systems are modeled as deterministic state machines (the part to be ac-
counted for) and an application part (not relevant for accountability, may contain secret data).
A system node is either correct – it follows the given protocol –or faulty. Only faults observable
by correct nodes are considered. If a node sends a message that a correct node would not send
(a detectably faulty node), a correct node that has a proof of it can expose this faulty node. If
a node does not send a message that a correct node would send (a detectably ignorant node),
a correct node that does not receive the message can suspect this faulty node until it receives
the message (so eventually forever). PeerReview guarantees two properties:

– (completeness) eventually, every correct node suspects forever every detectably ignorant
node, and exposes or suspects one of the nodes causally affected by each detectably faulty
node.

– (accuracy) no correct node is forever suspected or exposed by a correct node

Every node keeps a tamper-evident append-only log of its inputs and outputs, as well as periodic
snapshots of its state. Log entries form an hash chain; some entries are authenicated with digital
signatures. Commitment protocol is used to guarantee non-repudiation of origin and receipt
for the logged messages. Every node is associated to a set of witnesses, nodes who collect
evidence, check and distribute the verification results. The consistency protocol ensures that
each node maintains a single linear log (similar to the double-commitment detection problem
in Section 3.2). One of the witnesses must be correct at least to ensure completeness. A node
is regularly audited by its witnesses: he receives a request two authenticated log entries, and
must provide all the log entries chronologically in between them. During audit the witness runs
the protocol reference implementation initiliazed with the a recent snapshot from the received
log, and compares the outputs with the log; any difference allows to expose the node. The
authors choose to use the reference implementation to avoid introducing a gap relative to a
formal specification, or define a judge function like we do. However the amount of logged data
is considerably larger, since all the input/outputs, as well as state some state snapshots, must
be logged. The practical implementation of the system is costful, in particular the consistency
and evidence-transfer protocol between the witnesses and the other correct nodes.

A similar idea has been applied to protect the integrity of distributed Web applications by
the Ripley tool [Vikram et al., 2009]. Untrusted client-side application parts are replicated and
run in parallel at the server’s side, the results of both untrusted and trusted executions are
logged. Ripley automatically transmits all user inputs to the replica, and compares the logs:
all discrepancy exposes an attack. Though the main intention of the tool is to dynamically
guarantee the application integrity – that is, the server execution blocks until the client’s side
results are received and successfully checked against the trusted replica’s results – the tool can
also be used in an optimistic way where the logs are only checked periodically.

Maniatis [2003] developed a way to provide global secure history preservation using entan-
glement of distributed logs in an undeniable, tamper-evident way, based on logical clocks and
cryptographically secure hash functions.

Existing meanings of Auditability The term “auditability” is not new; it has been used
to refer to various properties sometimes quite different from the one we propose. Below we

66 CHAPTER 4. A GENERAL DEFINITION OF AUDITABILITY

attempt a non-exaustive disambiguation.
As we already mentioned, according to [Etalle and Winsborough, 2007]auditability of a

principal for an action implies that the principal is able to prove the compliance of his action
with respect to the current policies. In our setting this property is implicitly assumed for all
principals.

More related to our meaning, the term of auditability has been used in previous work to
denote the informal ability of a system to produce enough evidence for a posteriori audit analysis
(as equivalent to material evidence). For instance, Peha [1999] suggests that “A system for
electronic transactions should be as auditable as transactions in the physical world . . . it should
be possible to identify the guilty parties . . . even if the parties in a transaction and operators of
the system itself cooperate to falsify records”.

Chaum [1982] in his pioneering work on blind signatures for anonymous e-cash refered to
auditability as to the “ability of individuals to provide proof of payment” in case of an audit;
an ability that again contradicts the anonymity privilege of payers.

A company claiming auditability of its digital notary services, Surety [sur, 1994] offers
a notary service for protecting and independently verifying and proving the authenticity of
electronic documents. Given a customer’s document, its hash is bound and timestamped to get
a Surety Integrity Seal which can be then be used to prove the authenticity of the document
to anyone. Each hash is integrated into the global system’s hash chain whose integrity value
is regularly published in the New York Times. The original work, underlying the company’s
patents, proposed a method of time-stamping a digital document [Haber and Stornetta, 1991]
with a time-stamping service (TSS). It introduced several key ideas: first, for authentication
purposes, it is sufficient to send the hash of the document to TSS, rather than the whole
document; second, the TSS can sign the time-stamp together with the hashed document to
prove its competence to the client and to avoid storing the record; third, to prevent TSS from
issuing false (past- or future-dated) time-stamps, TSS should include bits of previously time-
stamped documents in its signature.

Chapter 5

Automatic verification of
auditability

This chapter presents an automatic method for verifying the property of auditability defined
in Section 5.1. We rely on refinement types and use the F7 typechecker for F# [Bhargavan
et al., 2008a] to statically verify that a property is auditable in a program. Our approach is
tested against several sample protocols, including the F# implementation of a realistic multi-
party partial-information game (Section 5.2). The source code for all our protocols is available
online [cod].

5.1 Static analysis of auditability

In the previous chapter we rely on assume, assert, and audit statements to relate the
states of a program to logical formulas. Our aim now is to assign precise types to the judge
function and the audit statement, so that typechecking a well-formed protocol will be enough
to satisfy the hypotheses of Definition 4.3.1, and thus to verify that a property is auditable.

We first discuss the typing annotations required to guarantee the correctness of the judge,
then those needed to guarantee the completeness of the evidence.

Correctness A judge is a public function that returns a boolean value. The untrusted envi-
ronment should be able to invoke it, so the arguments of the judge function must be of type
bytestrings refined with predicate Pub (this type is abbreviated as bytespub). In particular, the
evidence values themselves are not trusted until they are verified by the judge. The correctness
condition requires the judge to return true only when the target audited property (say C)
holds; this can easily be expressed as a post-condition on the return type. This suggests the
following type declaration for the judge function:

val judge: x̃: ˜bytespub → e:bytespub → b:bool { b=true ⇒C}

Any expression that can be given this type is a correct judge function.

Completeness Definition 4.3.1 states that some evidence is complete for a successful audit
request if a call to the judge in the same context and with the same evidence returns true.
This requires that: (1) the judge terminates, and (2) if the judge terminates, it returns true.

Termination of the judge function must be proved manually. Termination is hard to prove
in general, but pragmatically we limit ourselves to judges that are sequences of calls to deter-
ministic functions that terminate unconditionally: either non-recursive functions, or recursive
functions that can be easily shown to terminate (e.g. functions over lists). For example, we
assume that all functions defined by libraries Data and Crypto terminate on all inputs. So
termination is not a real issue.

67

68 CHAPTER 5. AUTOMATIC VERIFICATION OF AUDITABILITY

We must then show that the context of every audit provides enough guarantees on the
gathered evidence to ensure that the judge returns true. This amounts to writing a success
condition for the judge; typechecking is then used to verify that the condition holds at every
audit point.

Let D be a formula with its free variables ranging over x̃, e, and the public variables of the
protocol. We say that D is a success condition for judge if judge can be type-checked against
the refined type

val judge : x̃: ˜bytespub → e:bytespub → b:bool { (D ⇒ b=true) }

Observe that the success condition does not need to be trusted, as its correctness is checked
by the type-checker. Guessing a valid success condition might not be easy. Typically a judge
is a sequence of verifications: its success condition is the conjunction of the success conditions
for each of them. A successful call to judge also guarantees completeness of the evidence; in
practice it is helpful to record the fact that judge returns true only if the success condition
holds. If we combine these post-conditions for completeness with that required for correctness,
we obtain the following type annotation:

val judge : x̃: ˜bytespub → e:bytespub → b:bool { (b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true) }

Typechecking must then guarantee that the success condition D holds for the evidence used
in the actual audit request. To enforce it in the F7 code that includes the audit primitive
audit C L, we declare that audit is a function typed with precondition D:

private val audit : x̃: ˜bytespub → e:bytespub { D }→ unit

This guarantees that the success condition holds in the judge invocation context. We suppose
that the audit function is simply implemented as let audit x̃ e = () in all protocols which
contain an audit statement.

With these type annotations, typechecking plus unconditional termination of the judge imply
auditability (as shown in Theorem 5.1).

Success conditions and cryptography We also need some additional refinements for public-
key signatures, so that typechecking guarantees the success of future signature verifications once
a signature has been verified. We introduce a predicate IsDsig(vk,m, sg) where vk, m, and sg
are of type key, bytes, and bytes respectively. This predicate records key-data-signature triples
for which the cryptographic primitive rsa verify is guaranteed to succeed.

assume ∀vk,m,sg. IsDsig(vk,m,sg) ⇔∃sk. PubPrivKeyPair(vk,sk) ∧ IsSignature(sg,sk,m)

The post-condition of rsa verify is now a conjunction that captures the two uses of the
function: either we do not know whether it will succeed and if it returns true we learn one
IsDsig fact; or we know the relevant IsDsig fact and we deduce that it will return true.

val rsa verify : vk:signed verifkey → p:payload → sg:dsig → b:bool
{ b=true ⇒ (C ∧ IsDsig(vk, p, sg)) ∧ (IsDsig(vk, p, sg) ⇒ b=true) }

For example, our judge for authenticated mail calls rsa verify once, and it can now be
re-typed with a success clause:

val judge : text:string → e:bytes → b:bool
{ (b=true ⇒ (Send("A",text) ∧ IsDsig(pka,text,e)) ∧ (IsDsig(pka,text,e) ⇒ b=true) }

Formalization To formally state this result we must first package the protocol as a refined
module. For instance, in our mail example, we must add the following type for audit to the
interface of the module:

private val audit : text:string → e:bytespub {IsDsig(pka,text,e)}→ unit

The following theorem formalizes the methodology introduced above.

5.1. STATIC ANALYSIS OF AUDITABILITY 69

Theorem 5.1 (Auditability by typing). Let 〈L, IL〉 be a well-formed protocol with a judge
function that always terminates and an audit statement audit C L in its scope (with fv(C) =
{x̃}).

If (∅,L, IL)is a refined module
and there exists a success condition D (with fv(D) ⊆ {x̃, e} ∪ public(IL)) such that

IL(judge) = x̃: ˜bytespub → e:bytespub → b:bool{(b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)} and

IL(audit) = x̃: ˜bytespub → e:bytespub { D }→ unit and
then the protocol 〈L, IL〉 is auditable for C.

The proof of Theorem 5.1 depends on a lemma that states that the type of the judge and
audit function do not change during the reductions, despite the presence of an opponent.

Lemma 5.2 (No rebinding). For all refined module (∅, X, I), for all opponent O such that
I ` O : unit, for any public value v such that v ∈ bv(I), if X[O] →∗ E[A] for some evaluation
context E and expression A, and ∅ ` X[O] : unit then for all subderivation Γ ` v : Tv within
the type derivation ∅ ` E[A] : unit we have Γ ` v : I(v).

Proof of Lemma 5.2 This lemma is a variant of the subject reduction result for RCF (The-
orem 2.1) relying on the fact that bound variables of modules are distinct. �

Proof of Theorem 5.1 Let 〈L, IL〉 be a well-formed protocol which contains:
– a judge function that always terminates: let judge x̃ e = J , and
– an audit function: let audit x̃ e = ()
– an audit request audit M̃ N .

Let C and D be two properties such that fv(C) = x̃ and fv(D) ⊆ {x̃, e} ∪ public(IL)
We suppose that

(1) IL(judge) = x̃: ˜bytespub → e:bytespub → b:bool{(b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)}

(2) IL(audit) = x̃: ˜bytespub → e:bytespub { D }→ unit

(3) (∅,L, IL) is a refined module.

By Theorem 2.2 the module (∅,L, IL) is robustly safe. Hence, L is safe for every opponent
O such that IL ` O : unit and ∅ ` L[O] : unit.

Let O be such an opponent. We write L[O] as A[J, L].

Correctness We suppose that L[O]→ ∗E[Jσ] for some evaluation context E and substitution

σ. Since J only occurs in the body of the function judge, we have L[O] → ∗E[(judge M̃ N)σ′]
where σ′ = σ′[fun x̃ → fun e → J/judge].

By subject reduction (Theorem 2.1), ∅ ` E[(judge M̃ N)σ′] : unit, where E binds the names
ã and assumes the formulas F .

By the typing derivation above, we have Γ ` (judge M̃ N)σ′ : T for some type T in the
typing environment Γ = ã, F .

By Lemma 5.2, we have Γ ` judge σ′ : Ijudge(judge) = x̃: ˜bytespub → e:bytespub → b:bool{(
b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)}.

By typing rule for application, we have Γ ` (judge M̃ N)σ′ : b:bool{(b=true ⇒ (C ∧D)) ∧
(D ⇒ b=true)}σ′.

Suppose that Jσ →∗ true, then E[judge M̃ N)σ′]→∗ E[true]. Then, by subject reduction
(Theorem 2.1), Γ `true :b:bool{ (b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true) }σ′.

Since true is a value, the typing derivation above must use the value typing rule (Typ
Refine). Hence, we must have the logical derivation F `(b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)
}σ′[true/b]. That is, F ` Cσ′.

70 CHAPTER 5. AUTOMATIC VERIFICATION OF AUDITABILITY

Completeness We suppose that L[O]→∗ E[Nσ] for some evaluation context E that binds the
names ã and assumes the formulas F and for some substitution σ. Since the term N only occurs
in the function application audit M̃ N , we have L[O]→ ∗E[(audit M̃ N)σ′] where σ′ = σ[fun
x̃ → fun e → J/judge][fun x̃ → fun e → ()/audit] (by assumption, the audit statement is in

the scope of judge). By subject reduction (Theorem 2.1), ∅ ` E[(audit M̃ N)σ′] : unit.

By the typing derivation above, we have Γ ` (audit M̃ N)σ′ : T for some type T in the
typing environment Γ = ã, F .

By Lemma 5.2, we have Γ ` audit σ′ : Iaudit(audit) = x̃ : ˜bytespub → e:bytespub{D} → b:
unit.

By typing rule for application, we have

Γ ` M̃ σ′ : ˜bytespub (5.1.1)

Γ ` N σ′ : e : bytespub{D}σ′ (5.1.2)

We consider the type of the expression Jσ′{N/e} in the environment Γ. Since J occurs in

the body of judge, we have Jσ′{N/e} ≡ (judge M̃ e)σ′{N/e} ≡ (judge M̃ N) σ′{N/e}.
By Lemma 5.2, we have Γ ` judge σ′{N/e} : Ijudge(judge) = x̃: ˜bytespub → e:bytespub → b

:bool{(b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)}.
We can apply the typing rule for application to the arguments M̃ and N (5.1.1 and 5.1.2),

and obtain Γ ` (judge M̃ N)σ′{N/e} : b:bool{(b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true)}σ′{N/e}.
By typing rule for values and 5.1.2, we have Γ ` N σ′ : (D{N/e})σ′{N/e} = Dσ′{N/e}.
By typing rule for refined values, Γ ` (judge M̃ N)σ′{N/e} : b:bool{D ∧ (b=true ⇒ (C ∧D

)) ∧ (D ⇒ b=true)}σ′{N/e}.
After simplifying the formula we have Γ ` (judge M̃ N)σ′{N/e} : b:bool{b=true}σ′{N/e}.
By assumption, the judge terminates, so there exists a value V such that E[judge M̃ N σ′]

→∗ V .
By subject reduction, we have that Γ ` V b:bool{b=true}.
By typing rule for values, we must have the logical derivation F `b=true{V/b}. So V =

true in the evaluation context E. �

5.2 Application: a protocol for n-player games

We implement and verify security properties of the multi-party game protocol described in
Section 2.2.3. Interestingly, it offers a non-trivial auditable property: at the end of the game,
depending on the moves for all players, one player wins and can prove his wins to be recognised
as the winner.

Informal description of the protocol We review the protocol from the perspective of a
concrete ML implementation.

The protocol has two roles, the player and the server; each run involves n+ 1 principals, n
players plus one server. The same principal may be involved multiple times in the same run, as
several players plus possibly the server.

The protocol has three rounds, each with a message from every player to the server, followed
by a message from the server multicast to every player:

Playeri −→ Server : Playeri Hello

Server −→ Playeri : id, P̃ layer, {id, P̃ layer}Server Start the game
Playeri −→ Server : Hi, {id,Hi}Playeri Commit move, where Hi = hash(Playeri, id,Mi)

Server −→ Playeri : H̃, ˜{id,H}Player, {id, H̃}Server Commit list
Playeri −→ Server : Mi Reveal move

Server −→ Playeri : M̃ Reveal list

5.2. APPLICATION: A PROTOCOL FOR N-PLAYER GAMES 71

Each player first contacts the game server (Hello). Once a party of n players is ready, the
server informs the players that the game starts (Start): it generates a fresh game identifier id
and signs it together with the list of players Ãi for the game.

After accepting the server message, each player selects a move Mi and commits to it (Commit
move): he computes and signs the hash of his move together with the game identifier (to prevent
replay attacks) and his own name (to prevent reflection attacks). The server countersigns and
forwards all commitments to all players (Commit list).

After accepting the server message and checking all commitments, each player unveils his
move to the server (Reveal move). The server finally publishes all moves (Reveal list), hence
any party can now compute the outcome of the game.

Prevented attacks

– Message integrity and secrecy attacks Malicious principals control the environment: any
of the messages sent by the participants are public and may be corrupted on the way
to their destination. Cryptographic hashing of a principal’s move prevents the opponent
from discovering the move before the end of the bidding phase. Cryptographic signatures
allow to detect corruption of a message, but also authenticate the signer.

– Replay attack Both the server and the players include the game identifier, chosen fresh
at protocol start, in their signatures. Without this, for instance, once a malicious player
knows both the sealed and the revealed move of an honest player, he could attempt
repeating it in another game. The game identifier binds each cryptographic message
element to a particular game.

– Reflection attack Players embed their identity inside their sealed move. Without this, a
malicious player collaborating with the server could “copy” the moves of an honest player,
and so share the gain in case of victory. For this he should simply wait for an honest player
to issue his sealed move, countersign the hash (without even knowing it), and use it as its
own sealed move. After the end of the bidding phase he should again wait for the honest
player to reveal his move, and just copy it.

Protocol implementation The complete, verified source code for the protocol implemen-
tation appears online [cod]. It consists of 280 lines of F7 declarations and 420 lines of F#
definitions, excluding the standard F7/F# libraries for networking and cryptography. The code
is reasonably complex, partly because of the tension between confidentiality and authentica-
tion/auditability, partly because it supports any number of players. In particular, the protocol
operates on signed lists with embedded hashes, and one could easily miss one step of their valida-
tion. (In the process of prototyping, we identified and fixed several errors involving ambiguous
message formats.) Automated verification for n-ary group protocols and their implementations
is still largely an open problem, even for confidentiality and authentication [Baughman and
Levine, 2001].

Security goals (informally) Our protocol offers several properties.

– Integrity: the messages (Start), (Commit) and (Commit list) are authenticated.
– Secrecy: each player’s move remains secret until successful completion of the commitment

round, hence the other players’ moves for this game cannot depend on it.
– Auditability: once a player wins a game id, it can reliably convince all other principals of

his victory (according to a “judge” procedure, defined below).

To prove his wins, each player collects the verified commitments from the other players,
as well as the second server signature. We now explain what constitutes evidence for this
property, first operationally, by defining our judge function, then from a specification viewpoint,
by defining formulas that relate the actions of the participants.

72 CHAPTER 5. AUTOMATIC VERIFICATION OF AUDITABILITY

Judge and evidence Our target property is Wins(server,id,players,winner,move), a predi-
cate parameterized by the server principal, the game identifier, the list of players, the winner
principal, and the winning move. Below we list the judge, as defined in our ML implementation:
a function that takes the same parameters plus some evidence e = (ssig2,evl):

let judgeWins server n winner move e =
let (ssig2,evl) = e in
let players,(hashes:hash list),moves,sigs = unzip4 evl in (* (1) *)

let vk = getPublicKey usage server in
let b1 = payload2bytes (CommitList data(n,players,hashes)) in
if rsa verify prin usage server vk b1 ssig2 then (* (2) *)

if forall hash verify hash n evl then (* (3) *)

assert(ValidHashes(n,evl));
if forall move verify move n evl then (* (4) *)

assert(ValidMoves(n,evl));
if winning move move moves then (* (5) *)

if exists winner move evl then (* (6) *)

true
else false (* not actually played *)

and that calls the two auxiliary functions

let verify hash n (player,hash,move,sg) = (* (3) *)

let vk = getPublicKey usage player in
let b = payload2bytes (Commit data(n,hash)) in
rsa verify prin usage player vk b sg

let verify move n (player,hash,move,sg) = (* (4) *)

let b = move2bytes (player,n,move) in
let h’ = sha1 b in
hash = h’

Function verify hash checks a blinded move against its signature for a given principal. Func-
tion verify move checks a blinded move against the real move.

Our implementation relies on the Principals library for key management. The source code
of the game refers directly to the principals’ identities and call the corresponding key retrieval
functions before generating or verifying a signature. For instance, the judge retrieves the public
keys of the server and, using the iteration on the list, of all the players to verify their signatures.
The variable usage globally identifies the keys used by this protocol in the key database.

Functions payload2bytes and move2bytes marshal the protocol messages and the players’
moves, respectively. Moves are blinded using the SHA1 hash function.

The evidence should consist of the server’s signature on the committed hashes (ssig2) and
a list (evl) of 4-tuples Ai, Hi,Mi, {N,Hi}Ai (one for each player). This evidence is checked as
follows:

(1) split the tuple list into 4 lists of the respective tuple components, using a variant of the
ML library function List.unzip; then check that

(2) the server’s signature on the hashes is valid;

(3) for each 4-tuple, the hash is well-signed;

(4) for each 4-tuple, the hash is correctly computed from the move;

(5) move meets some game-specific victory condition; and

(6) winner actually played this move.

Finally, return true if all those checks succeed, false otherwise. The code uses monomorphic
variants of the ML library function List.forall that calls a boolean function on each element of
a list and returns true if all those calls return true. The code of this function is replicated
as forall hash and forall move, and given call-site specific types needed for typechecking. In

5.2. APPLICATION: A PROTOCOL FOR N-PLAYER GAMES 73

Chapter 6 we work around this limitation of F7 so that code replication is not needed any
more.

Logical Properties To convince ourselves (and the players) that our judge is indeed correct,
and that our player is auditable for Wins(s,id,pls,w,m), we now associate logical properties with
each message, at each point of the protocol. This association is enforced by typechecking our
code against refinement types that embed these properties. Thus, these properties form the
basis for our security verification. We refer to the code for their complete, formal definition.
By convention, when a property can be attributed to a principal, the corresponding predicate
records that principal as its first argument. We first specify the events assumed by the principals
before signing. To sign a message, the corresponding predicate must be assumed.

Message Assumption Meaning
Start Start(s, players, id) server s started game id with players
Commit Commits(p, id, hash) player p committed to hash in game id
Commit list CommitList(s, id, hashes) server s collected hashes in game id

We also define auxiliary predicates for verifying our code, for instance recursive predicates
on lists. These definitions often provide convenient abbreviations which hide the details of
the logical formulas attached to cryptographic constructs. ValidHashes holds for some evidence
when all the players committed to their hashes ValidMoves holds when all the players the moves
of all the players match their blinded moves.

Predicate Mem defines list membership. Predicate Zip4(l,l1,l2,l3,l4) is the verified post-
condition of a function unzip4 that splits a list l of 4-tuples into four lists l1, l2, l3, and l4.
Predicate Winning(m,ms) holds when the function winning move(m,ms) returns true.

The main rule of the game puts all these pieces together, formalising when the players and
the server concede victory, as an assumption that defines the Wins predicate:

∀server,n,winner,move.
∀players,moves,evl,r1,hashes,sigs,vks.

(Zip4(evl,players,hashes,moves,sigs)
∧ (Game(server,players,n) ∧CommitList(server,n,hashes)) ∨Bad(server)
∧ValidHashes(n,evl) ∧ValidMoves(n,evl)
∧Winning(move,moves)
∧∃hash,sg. Mem((winner,hash,move,sg),evl)
⇒Wins(server,n,winner,move)

Victory is inferred when server started a game id for some players (Start) and collected
some commitments hashes (CommitList), and when there are moves, and sigs that form a list
of evidence evl (Zip4), such that (i) (sanity checks) in each tuple, the hash is obtained from the
move (ValidMoves), and the principal signed his hash (ValidHashes); (ii) (victory check) move
is the best move among all moves (Winning), and winner did play move (Mem).

Principals and Partial Compromise Our model finally accounts for compromised players
and servers; to this end, we provide a public interface for creating both good and bad (compro-
mised) principals. Before releasing a signing key to the opponent, to satisfy the pre-condition of
the key compromise library function Principals.rsa keycomp (see Section 2.4.4) we formally as-
sume Leak(p), which collects any assumption that the compromised principal p may ever make,
both as a server and as player:

assume (∀p. Leak(p) ⇒ (∀n,x. Game(p,x,n) ∧CommitList(p,n,x) ∧Commits(p,n,x)))

Player (with an Audit statement) In contrast with the code for the judge, the players
need not agree on the code for the server and the other players. Still, a player willing to use
our client code may wish to review when this code performs actions on his behalf (relying on

74 CHAPTER 5. AUTOMATIC VERIFICATION OF AUDITABILITY

the asserts statements), and when this code has enough evidence to prove his wins (relying on
the audit statement). The code for the player is listed in Appendix E.1. The audit statement
appears after successfully processing all three messages from the server. The gathered evidence
consists of the server’s signature for the list of commitments, and the list of 5-tuples representing
all moves.

Security (formally) We can now precisely state and prove our security goals. The most
interesting result is that, for any number of games between any number of players, for any
assignment of the server and these players to principals, any player’s win is auditable, even if
all other participants are corrupted and collude against this player.

Theorem 5.3 (Security of the n-players game). Let 〈L, IL〉 match the protocol obtained by
composing the Net,Db,Crypto, and Principals libraries and the source code Lgame of our game
protocol with the type interface IL of our game protocol.

(1) integrity: L is robustly safe;

(2) auditability: L is auditable for the property Wins(server,id,players,winner,move);

(3) secrecy: L preserves secrecy of the moves until all players commit.

Proof: (1) By typing the code and Theorem 2.2, all assertions are always satisfied.

(2) By typing, Theorem 5.1, and a termination argument for the judge: its code is a sequence of
let bindings on expressions that terminate in linear time in the size of their list parameters,
so by construction the judge function terminates on all inputs. By typing we have that
our protocol code ((Net,Db, Crypto, Principals),Lgame, IL) is a refined module, and so
its composition with the refined library modules is also a refined module.

(3) By typechecking a variant of the code (done for the previous version of F7 cryptographic
libraries). We model a move as a function with the ReleaseMove(player,id) precondition
(defined below) so that one cannot actually apply the function without satisfying the
precondition. Player p may release his move in game id, if a server committed to a list of
valid sealed bids for all players including p.

�

Other auditable properties In this protocol if honest players never communicate with each
other, a server could run several sessions with subsets of players after receiving their sealed bids,
and thus convince several of them of their victory. This attack is similar to multiple commitment
in Section 3.2. However this would require him to issue several CommitList signatures. The
property “server s cheated in a game i” can be audited. To condemn the server it would suffice
to find two signatures issued by the server during the same game (identified with the same
nonce) for different lists of players and sealed moves. A correct judge would check the well-
formedness and compare the signatures. This would allow us to treat corruption in a uniform
way at the logic level.

5.3 Related work on checking audit-related properties

Aura [Jia et al., 2008, Vaughan et al., 2008] is a programming language that embeds an
authorization logic and automatic audit logging. Its authorization logic, based on a dependently-
typed variant Dependency Core Calculus [Abadi et al., 1999], can express various security
policies. In particular, the “A says C” operator models permission and delegation policies
endorsed by principals. Untrusted but well-typed applications willing to access a protected
resource, must possess a proof that this access may be granted. Aura enforces logging of these

5.3. RELATED WORK ON CHECKING AUDIT-RELATED PROPERTIES 75

proofs as evidence for a posteriori audit. Compared to the F7 typechecker, which uses formulas
only for typechecking then erases them, Aura’s logic constructs and proofs are first-class citizens,
computed and manipulated at runtime. Aura has no specific support for cryptography: generic
signatures of propositions rather than of data terms are allowed, and, relying on signed proof
terms, Aura can log these as evidence of any past run. Since, in their design, all authorisations
decisions are implicitly auditable, at run-time Aura must carry all generated proof terms (at least
before compiler optimizations). In our approach, the programmer exports the terms that will
constitute the evidence, as an important, explicit part of the protocol design. The typechecker
statically guarantees completeness of the evidence and, at run-time, the judge validates the
associated proofs only on demand.

The audit-based logical framework for discretionary access control developed by Cederquist
et al. [2007], also discussed in Section 4.5, is not implemented for a particular programming
language and does not provide a static analysis method to verify accountability.

76 CHAPTER 5. AUTOMATIC VERIFICATION OF AUDITABILITY

Chapter 6

Using pre- and post-conditions to
verify auditability

The contribution of this chapter is twofold. We extend the F7 typechecker to support
modular verification of higher-order security APIs and compact type annotations for checking
auditability.

6.1 Towards more flexibility for F7

In practice, protocol implementations involve various data structures, and thus the need
for type annotations extends to various library functions that manipulate this data. Although
F7 supports polymorphism à la ML, it is difficult to give these library functions precise, yet
polymorphic refinement types. In particular, recursive data processing involves higher-order
functions, and the programmer must often provide a refinement type each time he uses these
functions. Pragmatically, this involves replicating the code for these functions (and some of the
functions they call); annotating each replica with its ad hoc type; and letting F7 typecheck the
replica for each particular usage. For instance, the code of List.forall has to be replicated at
different call sites in the multi-party protocol of Section 5.

As another example, when the message format used by a protocol is under development it
may change often. Each change trickles down the protocol data flow, demanding many changes
to logical annotations, and possibly further code replication. This hinders code modularity.
Can we write less code and annotations, and focus on the security properties of our program?
In this chapter we show how using automatic predicates for pre- and post-conditions allows us
to write more flexible and reusable types.

Example Consider the type α option, which is part of the standard ML library. Its instance
int option is the type of optional integers: its values range over None and Some n, where n is an
integer. Using option types, we can, for example, program protocols that have optional fields
in their messages. To manipulate a message field of type int option, it is convenient to use the
higher-order library function map:

val map: (int → int) → int option → int option
let map f x = match x with
| None →None
| Some(v) → let w = f v in Some(w)

This function can be applied to any function whose type is a subtype of int → int, of the form
x:int → y:int{C(x,y)} for some formula C that can refer to both x and y. Suppose that we
compute a value using map over a function f with type v : int →w : int {w>v}:

77

78 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

let y = map f (Some(0))

We would like to give y a type that records the post-condition of f :

val y:int option{∃w. y = Some(w) ∧w > 0}

What type must map have in order for y to have this type? Within RCF, the most precise type
we can give is

val map: f:(int → int) → x:(int option) → y:(int option)
{ (x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w))}

This type accounts for the various cases (None vs Some) of the argument, but not for the
post-condition of f . In RCF, terms in formulas range over ML values, such as Some(w), but
not expressions, such as f x, since their evaluation may cause and depend on side-effects. Thus,
the only way to check that y has its desired type is to copy the definition of the map function
just for f and to annotate and typecheck it again:

val map copy: f:(v:int →w:int {w>v}) → x:(int option) → y:(int option)
{ (x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w) ∧w > v)}

Our main idea is to let the F7 typechecker automatically inject and check annotations for
pre- and post-conditions. This yields precise, generic types for higher-order functions, thereby
preventing the need for manual code duplication and annotation. To this end, we introduce
predicates Pre and Post within the types of higher-order functions to refer to the pre- and
post-conditions of their functional arguments. For instance, the formula Post(f,v,w) can refer
to the post-condition of a function parameter f applied to v returning w, and we can give map
the type:

val map: f:(int → int) → x:int option → y:int option
{(x = None ∧ y = None) ∨ (∃v,w. x = Some(v) ∧ y = Some(w) ∧Post(f,v,w))}

Whenever map is called (say within the definition of y above), the actual post-condition of f
is statically known (w>v) and can be used instead of Post(f,v,w). Hence, y can be given its
desired type without loss of modularity.

More generally, we show how to use Pre and Post predicates to give precise reusable types
to a library of recursive higher-order functions for list processing, and use the library to verify
protocol implementations using lists. Verifying such implementations is beyond the reach of
typical security verification tools, since their proof requires some form of induction. For ex-
ample, Fs2pv [Bhargavan et al., 2008b] compiles F# into the applied π-calculus, for analysis
with ProVerif [Blanchet, 2001], a state-of-the-art domain-specific prover. Although Fs2pv and
ProVerif are able to prove complex XML-based cryptographic protocol code, they do so by
bounding lists to a constant length and then inlining and re-verifying the list processing code
at each call site.

6.2 Refinements for pre- and post-conditions

Classically, for a given function application, a pair of formulas (C1, C2) is a valid pair of
pre- and post-conditions when, if C1 holds just before calling the function, then C2 holds just
after the function completes. Hoare [1969] originally proposed them for arbitrary programs.
More recently, for example, Spec# [Barnett et al., 2005] and Code Contracts [Fähndrich et al.,
2010] let function definitions be annotated with contracts (formulas) expressing intended pre-
and post-conditions, which may be checked statically or dynamically. F7 naturally supports
pre- and post-conditions for functions as refinements of their argument and return types. For
instance, if an F7 function has type x1 : P1{C1} → x2 : P2{C2}, then asserting C1 before the
function call and C2 after the function returns is always safe.

6.2. REFINEMENTS FOR PRE- AND POST-CONDITIONS 79

In this section we show how to explicitly refer to pre- and post-conditions of functions
using generic predicates indexed by function value. There are at least three ways to define
the semantics of these predicates. When considering a program with verification annotations,
the pre- and post-condition of a function can refer either to the formulas declared with that
function, or to the formulas available at the call site, or to events tracking run-time calls and
returns. For each semantics, we introduce a pair of generic predicates, informally explain their
use, and then give (1) a formal code transformation; and (2) a patch to the F7 typing rules to
implement and validate this semantics.

6.2.1 Event-based semantics

Pre- and post-conditions can be seen as events marking the beginning and the end of a
function execution. We systematically record them by assuming facts for two predicates Call
and Return: the fact Call(M ,N) means that M is a function that has been applied to the
argument N ; Return(M ,N ,O) means that M is a function that has been applied to N and
has returned the value O. Formally, this yields a concrete, extensional, finite model, for each
partial run of a whole program.

We can use Call and Return to reason about run-time events, instead of introducing ad hoc
predicates for that purpose. For instance, if a function send parameterized by m assumes a
“begin event” Send(m) before signing a message with payload m, we can remove this assume
and use instead the generic event Call(send,m) in security specifications. Similarly, suppose
that keys are represented as bitstrings, but that the keys in use should be generated only by
a designated algorithm genKey. We can assign to keys the refinement type k : bytes { Return
(genKey,(),k) }. This pattern frequently applies to cryptographic materials such as nonces,
initialization vectors, and tags.

To preserve consistency of the assumed formulas, we rely on a standard notion of positive
and negative positions in types and formulas. (Hence, for instance, within the formula ∀b1
,b2,c. Call(concat,[b1;b2],c)⇒ IsConcat(c,b1,b2) the predicate Call occurs negatively while the
predicate IsConcat occurs positively.) In the program before the transformation, we forbid
positive occurrences of Call and Return in assumed formulas.

Code transformation We specify the event-based semantics by translating every syntactic
function and every function application

[[rec f: T. fun x → e]]E
4
= rec f: T. fun x →assume Call(f,x);[[e]]E

[[M N]]E
4
= let r =[[M]]E [[N]]Ein assume Return(M,N,r); r

(where r is fresh in M ,T , and N) and letting [[]]E be a homomorphism for all other expressions.
Thus, we bracket each call with events before and after the call.

Modifying the typechecker We achieve the same effect as the transformation by directly
injecting formulas when typechecking functions and applications. We replace the typing rule
(Typ Fun) with (Typ Fun PrePost), and the typing rule(Typ App) with (Typ App PrePost),
as shown below. We call the resulting type system RCFE .

80 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

RCF RCFE

(Typ Fun)
E ` x : T1 → T2 <: T
E, f : T, x : T1 ` e : T2

E ` rec f : T.(fun x→ e) : x : T1 → T2

(Typ Fun PrePost)
T = x : T1 → T2

E, f : T, x : T1, Call(f, x) ` e : T2

E ` (rec f : T.fun x→ e) : T

(Typ App)
E `M : x : T1 → T2

E ` N : T1

E ` (M N) : T2

(Typ App PrePost)
E `M : x : T1 → (r : P){C} E ` N : T1

T2 = (r : P){C ∧Return(M,x, r)}
E ` (M N) : T2{N/x}

Results We check that our transformation does not affect the operational behaviour, safety,
and well-typedness of programs that do not use Call and Return, and that the code transfor-
mation and the modified typing rules yield the same typing judgements. Let e be a closed
program. Let e ⇓ M denote evaluation of the expression e (e −→∗ νã.e′ � M where e′ consists
of assumptions and auxiliary threads).

Lemma 6.1. Suppose that Call and Return do not occur in e.
– Evaluation: for any value M , e ⇓M if and only if [[e]]E ⇓ [[M]]E ;
– Safety: e is safe if and only if [[e]]E is safe; and
– Typing: e is well-typed in RCF if and only if [[e]]E is well-typed in RCF.

Lemma 6.2. [[e]]E is well-typed in RCF if and only if e is well-typed in RCFE.

The proofs of these lemmas can be found in Appendix D.

6.2.2 Macro-expansion semantics

Pre- and post-conditions may also be seen as pure syntactic sugar, abbreviations that refer
to concrete formulas in the types of functions in scope (similar to the pre and post projections
of Régis-Gianas and Pottier [2008]). It is useful to refer to the pre- or post-condition of a known
and fully annotated function to avoid copying a formula which is big or likely to change during
the verification process.

To denote such macro-definitions, we introduce generic predicates #Pre and #Post. They
may occur anywhere in the program or its interface, provided that their first argument is a
variable name that has a declared function type in their scope. Before typechecking, we replace
each of their occurrences with a concrete formula read off the environment without breaking
well-formedness.

Implementation If E(f) = x1 : P1{C1} →x2 : P2{C2}, then we replace #Pre(f,M) with
C1[M/x1], and #Post(f,M,N) with C2[M/x1, N/x2]. If the lookup fails, or the returned type
is not a function type, preprocessing fails—the macro-definition is ill-formed.

6.2.3 Subtyping-based semantics

As opposed to the type annotations of function definitions, the declared types of function
arguments in higher-order functions are in general only supertypes of the argument types actu-
ally used at their call sites, themselves supertypes of the functional types verified at the function
definitions. Thus, as we type the higher-order function, the actual refinements for its argument
are unknown, and we cannot just rely on macro-expansion. We refer to these refinements using
predicates Pre and Post.

– We use them parametrically when typing higher-order functions, as if each function argu-
ment f had a type of the form x1 : P1{Pre(f, x1)} →x2 : P2{Post(f, x1, x2)}.

6.2. REFINEMENTS FOR PRE- AND POST-CONDITIONS 81

– We define their logical model as follows: for each closed function value, of the form

M = rec f : (x1 : P ◦1){C◦1} → (x2 : P ◦2){C◦2}.fun x1 → e

– Pre(M,M1) if and only if C◦1 [M1/x1] and
– Post(M,M1,M2) if and only if C◦1 [M1/x1]⇒ C◦2 [M1/x1,M2/x2].

– When applying a function parameter f of type T = x1:P1{C1} →x2:P2{C2} at the call
site, for any runtime instance M of f of the form above, we have ∀x1. C1 ⇒C◦1 and
∀x1,x2. C1 ∧C◦2 ⇒C2 by type safety and subtyping. Accordingly, for relating C1 and
C2 to the (unknown) parametric pre- and post-conditions of f during typechecking, we
automatically assume the formula

φf :T = ∀x1. C1 ⇒Pre(f,x1) ∧∀x1,x2. (C1 ∧Post(f,x1,x2)) ⇒C2

Intuitively, we treat f as if it had the refinement type
f:(x1:P1{Pre(f,x1)} → x2:P2{Post(f,x1,x2)}) { φf :T }

which is a subtype of f:(x1:P1{Pre(f,x1)} → x2:P2{Post(f,x1,x2)}).

Relation to the event-based semantics Within the body of a higher-order function with
function argument f , whenever f is applied to a value N , the event Call(f,N) records this ap-
plication, and typing requires that the predicate Pre(f,N) holds. At runtime, for each instance
M of f , the actual pre-condition of M holds (by typing) and implies the formal precondition of
f (by assumption) so we have

∀f,x. Call(f,x) ⇒Pre(f,x)

Similarly, when f returns, we have Return(f,N,O), and its formal post-condition Post(
f,N,O) implies the actual post-condition for any instance M of f (by assumption) so we have

∀f,x,y. Return(f,x,y) ⇒Post(f,x,y)

We thus assume both of these formulas for typechecking.

Code transformation To support Pre and Post, we rely on events, so we first apply the event-
based code transformation, then we transform every binding whose expression has a function
type annotation and apply [[]]S homomorphically to other expressions. In particular, we trans-
form every function let binding (since they are always annotated) and every syntactic function
definition, ensuring that all functional arguments are annotated in higher-order functions. Let
T abbreviate x1:P1{C1} →x2:P2{C2}.

[[let f = e : (f : T) {Cf}) in e’]]S
4
= let f = [[e]]S in assume φf :T ; [[e′]]S

[[rec f: T . fun x→ e]]S
4
= rec f: T. fun x → [[let x = (x : T1) in e]]S

Modifying the typechecker We modify F7 to support Pre and Post by modifying insertions
of variables entries with function types into the typing environment. Hence, E extended with
f : T is now written E ⊕ f : T , and defined by pattern matching on T . If T is a function type,
it is of the form f:(x1:P1{C1} → x2:P2{C2}){Cf} and we let

E ⊕ f : T
4
= E, f : T, φf :(x1:P1){C1}→(x2:P2){C2}

Otherwise E ⊕ f : T is just E, f : T . We call the modified type system RCFS . To maintain
logical consistency, we forbid positive occurrences of Pre and Post in assumed formulas.

Results
We obtain a variant of Lemma 6.1 for the subtyping semantics: we have a similar Eval-

uation property. The proof of Safety involves showing the logical consistency of the injected
assumptions.

82 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

Lemma 6.3. Suppose that Call and Return do not occur in e.

– Evaluation: for any value M , e ⇓M if and only if [[e]]S ⇓ [[M]]S ;
– Safety: e is safe if and only if [[e]]S is safe; and

We also prove two flavours of Correctness. We have a variant of Lemma 6.2 that relates
typing with RCFS and the specification [[]]S .

Lemma 6.4. [[e]]S is well-typed in RCF if and only if e is well-typed in RCFS.

Besides, we show a simple pattern such that Pre and Post can be eliminated by replicating
the code of a higher-order functions at each call site and annotating each replica with an ad hoc
type.

Theorem 6.5 (Inlining). Let e0 = let h = H in e be a well-typed expression in RCFS such
that H is a function with type T = g:(x:T1→T2) →T3, h only occurs in applicative position and
Pre and Post occur only in T3 and always have g as first argument.

Let e1 be e0 after replacing each subexpression of the form (h f) : T ′ in e with (Hf f) :T ′,
where Hf is H after replacing each Pre(g,M) and Post(g,M,N) with #Pre(f,M) and #Post(f,
M,N), respectively.

Then e1 is also well-typed in RCFS.

The proofs of these results can be found in Appendix D.

Functions with multiple arguments Our definitions above assume curried functions. For
convenience, we have also implemented typechecking support for functions with multiple argu-
ments, recorded as a list in our predicates. For example, the function call M a b assumes the
event Call(M,[a;b]).

6.3 Reusable typed interface for lists

Lists are perhaps the most commonly-used data structures in functional programs. The
F# List library provides efficient implementations of recursive list processing functions; for
generality, these functions are typically higher-order and polymorphic. Our goal is to give
this library a reusable refinement typed interface, using our Pre and Post predicates and their
subtyping-based semantics. The full interface is listed in Appendix E.2.

We detail our approach on the function List.fold, the general iterator on lists (also called
fold left). Its ML type is (α→ β→α)→α→ β list →α . It takes as argument a function f, an
initial accumulator a, a list l and traverses the list l, applying f to the current accumulator and
the next value in the list to obtain the next accumulator; when it reaches the end of the list, it
returns the accumulator. For example, fold (+) 0 [1;2;3;4] computes the sum of the elements in
the list.

To compute the sum of elements of a list l of integers using function (+): x:int → y:int → z
: int{z=x+y}, we write fold (+)0 l which can only be given type int, whereas we expect it to

have a refinement equivalent to s:int{
∑

x∈l x}. To achieve this in RCF, we can duplicate the
code of fold and giving this copy an ad hoc type. In this section we show how to give List.fold a
precise and reusable type that logically relates the iterated function with the accumulator and
the result.

First attempt: using recursive predicates Let us define two predicates PreFold and
PostFold to represent the pre- and post-condition of fold. By inspecting the code for fold (on
the left below) we can define these predicates as shown:

6.3. REUSABLE TYPED INTERFACE FOR LISTS 83

let rec
fold f acc l =
match l with
| [] → acc

| hd :: tl →
let acc’ = f acc hd in

fold f acc’ tl

assume ∀f,acc,l.
PreFold(f,acc,l)
⇔
(l=[]
∨
(∃hd,tl. l=hd::tl ∧
Pre(f,[acc;hd]) ∧
(∀acc’. Post(f,[acc;hd],acc’)

⇒PreFold(f,acc’,tl))))

assume ∀f,acc,l,r.
PostFold(f,acc,l,r)
⇔

((l=[] ∧ r=acc)
∨
(∃hd,tl. l=hd::tl ∧

(∃acc’. Post(f,[acc;hd],acc’)
∧PostFold(f,acc’,tl,r))))

The definition for PreFold can be read as follows. If the list is empty, there is no pre-
condition. Otherwise, the pre-condition of the argument f must hold for the head of the list
and the current accumulator, and if f terminates and returns a new accumulator, PreFold must
hold for the tail of the list and this new accumulator. The post-condition PostFold, if the list
is not empty, is that the iterated function applied to the head of the list and the accumulator
must return a new accumulator so that fold applied to this new accumulator and the tail of the
list returns this value.

The resulting type for fold

val fold: f:(α→β→α)→ acc:α→ l:β list{PreFold(f,acc,l)}→ r:α {PostFold(f,acc,l,r)}

is precise and easy to typecheck against the code of fold, yet difficult to use at call sites. Indeed,
even for a function with no pre-condition (∀x. Pre(f,x)), proving PreFold(f,acc,l) requires the
use of induction, which is generally beyond the reach of the SMT solver Z3 that underlies F7.
Can we use a non-recursive predicate to specify fold?

Second attempt: using invariants In our second approach, we adopt the style of Régis-
Gianas and Pottier [2008] for specifying higher-order iterators, such as fold. We introduce a
generic predicate Inv that is used to define logical invariants for functions that may be used as
an argument to fold. The formula Inv(f,aux,acc,l) is an invariant that holds when the function
f is being applied to a list of elements: l is the remainder of the list, acc is the intermediate
result of the computation, and aux contains function-specific auxiliary information about the
initial arguments to the fold.

As an example, consider the function fmem that can be used with fold to search for an
element in a list; its code, refinement type, and invariant are as follows:

let fmem v
acc
n
=

if v = n
then true
else acc

val fmem: v:α →
acc:bool →
n:β →
found:bool{
(v = n
∧ found = true)
∨ (found = acc)}

(∀v,f. Post(fmem,v,f) ⇒
(∀iv,acc,l. Inv(f,iv,acc,l) ⇔
(∃x,linit. iv=(x,linit) ∧ x = v
∧ (∀y. Mem(y,l) ⇒Mem(y,linit))
∧ ((Mem(x,linit)

∧ acc=true)
∨ acc = false))))

The function fmem takes an element v to search for, an accumulator acc and an integer n,
and returns true if either v = n or acc is true. The invariant for the function obtained by the
partial application fmem v is defined on the right; its auxiliary argument aux is a pair consisting
of the searched element v and the initial list linit. Its auxiliary argument is a pair consisting of
the integer v to search for, and the initial list linit. The invariant says that the remaining list l
contains a subset of the elements in linit, and that the accumulator is true only if v is a member
of linit.

The next step, following Régis-Gianas and Pottier, is to prove that the invariant is hereditary,
namely that the invariant of each function f is at least as strong as its pre-condition, and that the
invariant is preserved by function application. We define a predicate Hereditary that captures
this notion and use it to give a type to fold as shown below; note that to use this style we need

84 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

to add an additional argument aux to fold.

let rec fold v f acc l =
match l with
| [] → acc
| hd :: tl →

let acc’ = f acc hd in
fold v f acc’ tl

assume (∀f. Hereditary(f)
⇔

(∀v,acc,h,t. Inv(f,v,acc,hd::tl) ⇒
(Pre(f,[acc;hd])
∧ (∀r. Post(f,[acc;hd],r) ⇒ Inv(f,v,r,tl)))))

val fold : v: γ→ f:(α →β→α) {Hereditary(f)} → acc:α
→ xs:β list {Inv(f,v,acc,xs)}
→ r:α { (xs = [] ∧ r=acc) ∨ Inv(f,v,r,[]) }

The type of List.fold requires that (1) the invariant of the iterated function is hereditary;
and that (2) the invariant holds for the initial accumulator. The post-condition states that the
invariant holds for the final accumulator.

For example, to check that the application fold (v,l) (fmem v) false l can be given the type b
:bool {b = true ⇒Mem(v,l)} we must prove that ∀v,f. Post(fmem,v,f)⇒Hereditary(f), and that
the invariant of fmem v holds for the initial values (false,l). For a simple function like fmem
this can be proved automatically, but for more complex functions Hereditary may have to be
proved by hand. The rest of the typechecking is fully automatic.

6.4 Compact types for audit

Using event-based semantics With the original F7 typechecker the programmer has to
define his own auxiliary predicates corresponding to these events and enforce their relationship
to the function calls by assuming them within protocol code. In many cases though, she can
use the predicates Call or Return which are declared and managed automatically.

For instance, in the simple authentication example shown in Figure 4.1, we can omit declar-
ing and assuming the predicate ASent. Instead we can refer to the automatic event Call of the
function princA. Then we redefine Bob’s audit goal as follows:

assume ∀m. AMightSend(m) ⇔ (Call(princA,[m]) ∨Pub(ska))

Similarly, in the implementation of the multi-party protocol, the occurrences of predicate
Winning(m,ms) can be replaced with Return(winning move,[m;ms],true).

Using macro-expansion semantics To formally check the auditability of this protocol, first
we show that the judge is correct : whenever it returns true, the audited property holds. This
can be written as the following query:

∀text,e. #Post(judge,[text;e]) ⇒Call(princA,[text])

Then, to check that at every audit point the judge would have returned true, we set the
pre-condition of the audit primitive to #Post of the judge:

val audit: text:bytes → e:bytes {#Post(judge,[text;e])} → unit

The use of the macro-expansion predicate #Post here is a convenient way of making this
type dependent on the type of judge, hence avoiding the need to rewrite it when the protocol or
the judge change. Note that we cannot use the Return event or the Post predicate here (instead
of #Post) because both rely on a function having been called; here the call to audit must be
typeable without actually calling the judge function.

Using subtyping-based semantics Since the number of the players is a run-time param-
eter of the protocol, the participants have to manipulate lists of cryptographic evidence. For
instance, the function List.forall is used for three different series of checks, so in the original

6.5. PRE- AND POST-CONDITIONS FOR PROTOCOL IMPLEMENTATIONS 85

F7 implementation the function code had to be replicated and equipped with different ad hoc
types. Using the subtyping-based semantics, the same library function List.forall is used at all
call sites, which makes the code more compact and more readable.

6.5 Pre- and post-conditions for protocol implementations

We can use our new types for lists to verify more realistic cryptographic applications. We
present two case studies of programs previously verified using F7 and how our extensions help
reduce the number of annotations required for typechecking.

6.5.1 XML digital signatures

The XML digital signature standard specifies cryptographic mechanisms to provide integrity,
message authentication, and signer authentication for arbitrary XML data [Eastlake et al.,
2002]. These mechanisms are used within web services security protocols to protect messages,
and processing each message involves tree and list processing. For example, consider a single-
message protocol, where the principal a uses an XML signature to protect n ≥ 1 XML elements
m1, . . . , mn located at URIs #1, . . . , #n within the message, using the MAC key kab. The
main security goal for this protocol is that the list [m1; · · · ;mn] be authenticated; the protocol
is often used as a component within a larger protocol that enforces more abstract security
properties. The protocol with a slightly simplified message format can be written as follows:

a −→ b : 〈Message〉
m1 m2 . . . mn

〈Signature〉
〈SignatureInfo〉
〈Reference〉base64 (sha1 m1)) 〈/Reference〉
· · ·
〈Reference〉base64 (sha1 mn)) 〈/Reference〉
〈/SignatureInfo〉
〈SignatureValue〉
base64 (mac kab (〈SignatureInfo〉 · · · (as above) · · · 〈/SignatureInfo〉))
〈/SignatureValue〉
〈/Signature〉
〈/Message〉

In previous work, Bhargavan et al. [2010a] used F7 to program and verify a library for
manipulating such XML signatures. Now we can use List.map to improve this library and ease
its verification. Consider the following excerpt of the library interface and implementation.

val mkRef: m:item → r:item{Ref(m,r)}

val xml sign: a:str → b:str →
k:key{Return(mkXmlKey,[a;b],k)} →
ml:item list → dsig:item

val xml verify: a:str → b:str →
k:key{Return(mkXmlKey,[a;b],k)} →
ml:item list → dsig:item →
unit{Call(xml sign,[a;b;k;ml])}

let xml sign a b k ml =
let rl = map mkRef ml in
let si = Xn(signatureInfo,[],rl) in
let h = hmac k (ditem2bytes si) in
Xn(signature,[],[si;Xn(sigValue,[],[txt h])])

assume ∀a,b,k. Return(mkKey,[a;b],k) ⇒
(∀si. MACSays(k,si) ⇔

(∃ml. Call(xml sign,[a;b;k;ml]) ∧
SigInfo(si,ml)))

The type item represents XML elements; its constructor Xn(q,al,il) corresponds to an XML
element of the form <q al>il</q>, where q is a qualified name, such as Signature, al is a list
of XML attributes, and il is a list of XML items.

The function mkRef generates a sha1 cryptographic hash of its argument and returns it
within a <Reference> element. The function xml sign generates an XML signature over a list

86 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

of XML elements; it uses map over mkRef to generate a list of references, encapsulates them
within a <SignatureInfo> element, and MACs it with the given key k. The function xml verify
parses and verifies XML signature. Its post-condition guarantees that the signature must have
been generated using xml sign by a valid client (as part of an authenticated message).

The use of List.map avoids the need to inline the recursive code for map in the code for
xml sign and xml verify. In our previous verification of the full library, there were four instances
where we needed to inline list-processing functions and define new type annotations for each
instance. These are no longer necessary, reducing the annotation burden significantly.

6.5.2 X.509 certification paths

The X.509 recommendation [ITU, 1997] defines a standard format and processing procedure
for public-key certificates. Each certificate contains at least a principal name, a public-key
belonging to that principal, an issuer, and a signature of the certificate using the private key of
the issuer.

On receiving a certificate, the recipient first checks that the issuer is a trusted certification
authority and then verifies the signature on the certificate before accepting that the given
principal has the given public key. To account for situations where the certification authority
may not be known to the recipient, the certificate may itself contain a certification path: an
ordered sequence of public-key certificates that begins with a certificate issued by a trusted
certification authority and ends with a certificate for the desired principal. The X.509 sub-
protocol for verifying certification paths can be written as follows:

a −→ b : Certificate(a1 | pka1 | rsa sign skCA (a1 | pka1))
Certificate(a2 | pka2 | rsa sign ska1 (a2 | pka2))
· · ·
Certificate(a | pka | rsa sign skan−1

(a | pka))

We write and verify a new library for manipulating X.509 certificates. The code for certificate
verification uses List.fold to iterate through a certification path:

val verify:
x:cert{Certificate(x)} → b:bytes →
r:cert {Certifies(x,r) ∧Certificate(r)}

val verify all:
x:cert{Certificate(x)} → l: bytes list →
r:cert {Certifies(x,r)}

let verify all ca path =
fold ca verify ca path

assume ∀ca,x,h,l.
Inv(verify,ca,x,l) ⇔

(Certificate(x) ∧Certifies(ca,x))

The predicate Certifies(x,y) specifies that there is some sequence of certificates starting with
x and ending with y, x=x0, x1, . . . , xn=y, such that the principal mentioned in each xi has issued
the certificate xi+1; hence if every principal mentioned in this sequence is honest, then we can
trust that the public-key in the final certificate y indeed belongs to the principal mentioned in
y.

The function verify all takes as argument a certificate ca for a trusted certification authority
and it accepts only those certification paths that begin with certificates issued with ca’s public-
key. To typecheck verify all we define the fold invariant for verify as the property that the
accumulator x always has a valid certificate (Certificate(x)) and a valid certification path from
ca to x (Certifies(ca,x)).

The use of List.fold in verify all is the natural way of writing this code in ML. We could copy
the code for List.fold and redo the work of annotating and typechecking it for this protocol,
but reusing the types and formulas in List is more modular, and we believe, the right way of
developing proofs for such cryptographic applications.

6.6. RELATED WORK 87

6.6 Related work

Pre- and post-condition checking is supported by many program verification tools [e.g. Bar-
nett et al., 2005, Flanagan et al., 2002, Xu, 2006]. Our approach is most closely related to
that of Régis-Gianas and Pottier [2008], who show how to use Hoare-style annotations to check
programs written in a call-by-value language with recursive higher-order functions and polymor-
phic types. They extract proof obligations out of programs, and prove them using automated
provers. A computational function is logically interpreted as a pair of logical functions binding
the argument variables and the result variable to the formulas that serve as pre- and post-
conditions in the function type, respectively, like our macro-definitions in Section 6.2.2. A
function application f v annotated with formula P will for instance generate the proof obliga-
tions pre(f) (v) and ∀res.post(f) (v) (res)⇒ P (res). However, their system only uses declared
types (#Pre,#Post), and disregards subtyping and events.

Symbolic methods for verifying the security of protocol implementations utilize a vari-
ety of techniques, such as static analysis [Goubault-Larrecq and Parrennes, 2005], model-
checking [Chaki and Datta, 2009], and cryptographic theorem-proving [Bhargavan et al., 2008b].
The RCF type system is the first to use refinement types for verifying protocol implementa-
tions [Bengtson et al., 2008b]. Its implementation in the F7 typechecker has been successfully
used to verify complex cryptographic applications [Backes et al., 2009, Bhargavan et al., 2009,
2010a]. F7 requires programmer intervention in the form of type annotations, whereas some of
the other verification tools are fully automated. However, these other tools generally do not
apply to programs with recursive data structures. Besides, whole-program analysis techniques
seldom scales as well as modular ones, such as typechecking.

Fine [Swamy et al., 2010, Chen et al., 2010] is another extension of F# with refinement
types. It also supports affine types and proof-carrying bytecode verification. Its type system
has a notion of predicate polymorphism that captures some of the benefits of our pre- and
post-condition predicates. To use them, the programmer declares predicate parameters for
higher-order types and functions, and explicitly instantiates these predicates at each call site.
In contrast, our approach is able to verify legacy programs written purely in F# by automatically
injecting pre- and post-condition predicates.

By relying on standard verification techniques, we hope to benefit from their recent progress.
For example, Liquid Types [Rondon et al., 2008] have been proposed as a technique for inferring
refinement types for ML programs. The types inferred by Liquid Types are quite adequate for
verifying simple safety properties of a program, but not for the security types in this paper. We
can benefit from such mainstream inference techniques, but some adaptation is required; this
is an interesting direction for future work.

6.7 Conclusions and future work

Audit-related properties, like other security properties, require both formal and practical
tools for analyzing them. Through Chapters 4 to 6 we showed how to specify and check au-
ditability using refined types in F7 in three steps. As a first step, we proposed a general formal
definition of auditability as the ability of a program to log enough evidence in order to convince
a judge – a posteriori – that some property holds. This seemed to be the most general property
approximating the “usefulness” of logs as the ability to “pass” an audit.

Crucially, a judge can be modelled as the source code of the function that it runs during the
audit and which must be known and accepted by all parties. We can thus build on verification
techniques for source code to automatically verify auditability. As a second step, we proposed
a type discipline for F7 to express auditability as a type specification for ML code with logical
annotations, thus providing a practical analysis tool. Type annotations necessary for refined
typechecking with F7 must be provided by the programmer. Guessing the right annotations,

88 CHAPTER 6. USING PRE- AND POST-CONDITIONS TO VERIFY AUDITABILITY

and the success condition for the judge in particular, may not be easy, even if the annotations
need not be trusted, and candidate annotations may be “tested” by typechecking.

Finally, we started to investigate how to lighten the annotation burden of programmers.
We designed an extension for the F7 typechecker that supports explicitly referring to other
functions’ pre- and post-conditions. This offers more modularity to the typechecking and often
avoids replicating type annotations. As a further step, we plan to develop inference techniques
for refined types to reduce the annotations even further.

A future, more challenging, work is to design a tool that compiles audit requirements of the
form audit C to the minimal complete evidence for a given correct judge. We conjecture that,
at least in some cases, the type specification of the judge function carries enough information
to enable this synthesis.

Bibliography

Auditability using refined types: code examples. http://msr-inria.inria.fr/˜guts/thesis.

Absolute data integrity protection. www.surety.com, 1994.

M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th ACM
Symposium on Principles of Programming Languages (POPL’01), pages 104–115, January
2001. URL citeseer.ist.psu.edu/fournet01mobile.html.

M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE
Transactions on Software Engineering, 22(1):6–15, 1996.

M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 147–160. ACM, 1999.

M. Abadi, C. Fournet, and G. Gonthier. Secure Implementation of Channel Abstractions.
Information and Computation, 174(1):37–83, 2002.

P. Adão, C. Fournet, and N. Guts. High-level programming for e-cash. Workshop on Formal
and Computational Cryptography (FCC), 2008.

M. Backes, C. Hriţcu, M. Maffei, and T. Tarrach. Type-checking implementations of protocols
based on zero-knowledge proofs. In FCS, 2009.

M. Barnett, M. Leino, and W. Schulte. The Spec# programming system: An overview. In
CASSIS, pages 49–69, January 2005.

A. Barth, J. Mitchell, A. Datta, and S. Sundaram. Privacy and utility in business processes.
In Computer Security Foundations Symposium, 2007. CSF’07. 20th IEEE, pages 279–294.
IEEE, 2007.

N. Baughman and B. Levine. Cheat-proof playout for centralized and distributed online games.
In 20th Annual Joint Conference of the IEEE Computer and Communications Societies,
volume 1, 2001.

M. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic health
records. In Computer Security Foundations Workshop, 2004. Proceedings. 17th IEEE, pages
139–154. IEEE, 2004.

M. Bellare and B. Yee. Forward integrity for secure audit logs, 1997.

J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis. Refinement types for secure
implementations. Technical Report MSR-TR-2008-118, 2008a.

J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis. Refinement types for secure
implementations. In IEEE Computer Security Foundations Symposium, pages 17–32, 2008b.

89

citeseer.ist.psu.edu/fournet01mobile.html

90 BIBLIOGRAPHY

K. Bhargavan, C. Fournet, and A. Gordon. F7: Refinement types for F#. Available at
http://research.microsoft.com/en-us/projects/F7/, 2008a. version 1.0.

K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable implementations
of security protocols. ACM TOPLAS, 31:5:1–5:61, December 2008b.

K. Bhargavan, R. Corin, P. Deniélou, C. Fournet, and J. Leifer. Cryptographic protocol syn-
thesis and verification for multiparty sessions. In CSF, pages 124–140, 2009.

K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. In POPL, pages 445–456, 2010a.

K. Bhargavan, C. Fournet, and N. Guts. Typechecking higher-order security libraries. In To
appear in APLAS, 2010b.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW, pages
82–96, 2001.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 302–321. Springer, 2005.

J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed e-cash. In IEEE Symposium on
Security and Privacy, pages 101–115, 2007a.

J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed e-cash. In IEEE Symposium on
Security and Privacy, pages 101–115, 2007b.

J. Castellà-Roca, J. Domingo-Ferrer, A. Riera, and J. Borrell. Practical mental poker without
a ttp based on homomorphic encryption. In T. Johansson and S. Maitra, editors, Progress in
Cryptology-Indocrypt’2003, number 2904 in LNCS, pages 280–294. Berlin: Springer-Verlag,
2003. URL citeseer.ist.psu.edu/castella-roca03practical.html.

J. Cederquist, R. Corin, M. Dekker, S. Etalle, J. den Hartog, and G. Lenzini. Audit-based
compliance control. International Journal of Information Security, 6(2):133–151, 2007.

S. Chaki and A. Datta. ASPIER: An automated framework for verifying security protocol
implementations. In CSF, pages 172–185, 2009.

D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203, 1982.

D. Chaum. Secret-ballot receipts : True voter-verifiable elections. IEEE Security and Privacy,
2(1):38–47, January/February 2004.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO, volume 403 of
Lecture Notes in Computer Science, pages 319–327. Springer, 1988.

D. Chaum, P. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. Technical
Report CS-TR-880, 2004.

J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation for end-to-end verification of
security enforcement. In PLDI, pages 412–423, June 2010.

R. Corin, D. Galindo, and J. Hoepman. Securing Data Accountability in Decentralized Systems.
LNCS, 4277, 2006.

R. Corin, P.-M. Denielou, C. Fournet, K. Bhargavan, and J. Leifer. Secure implementations
for typed session abstractions. In 20th IEEE Computer Security Foundations Symposium
(CSF’07), pages 170–186, 2007.

citeseer.ist.psu.edu/castella-roca03practical.html

BIBLIOGRAPHY 91

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on information
theory, 29(2):198–208, 1983.

D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon.
XML-Signature Syntax and Processing, 2002. W3C Recommendation.

S. Etalle and W. Winsborough. A posteriori compliance control. In SACMAT, pages 11–20.
ACM Press New York, 2007.

S. Etalle, F. Massacci, and A. Yautsiukhin. The meaning of logs. Trust, Privacy and Security
in Digital Business, pages 145–154, 2007.

M. Fähndrich, M. Barnett, and F. Logozzo. Embedded Contract Languages. In SAC OOPS,
2010.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. SIGPLAN Not., 37(5):234–245, 2002.

C. Fournet, A. Gordon, and S. Maffeis. A Type Discipline for Authorization in Distributed
Systems. In IEEE Computer Security Foundations Symposium, pages 31–48, 2007.

C. Fournet, N. Guts, and F. Zappa Nardelli. A formal implementation of value commitment.
In ESOP, volume 4960 of LNCS, pages 383–397, 2008.

J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
VMCAI, pages 363–379, 2005.

N. Guts, C. Fournet, and F. Zappa Nardelli. Reliable evidence: Auditability by typing. In 14th
European Symposium on Research in Computer Security (ESORICS 2009), pages 168–183,
2009. To appear.

S. Haber and W. Stornetta. How to time-stamp a digital document. Advances in Cryptology-
CRYPT0’90, pages 437–455, 1991.

A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical accountability for dis-
tributed systems. ACM SIGOPS Operating Systems Review, 41(6):188, 2007.

R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance: problems and challenges.
In StorageSS, 2007.

C. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 1969.

ISO/IEC. Common criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/public/expert/index.php?menu=3, January 2004.

Recommendation X.509 (1997 E): Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework. ITU-T, June 1997.

R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. Towards a Theory of Accountability and
Audit. ESORICS 2009, 5789:152–167, 2009.

S. Jha, S. Katzenbeisser, C. Schallhart, H. Veith, and S. Chenney. Enforcing semantic integrity
on untrusted clients in networked virtual environments. Security and Privacy, 2007. SP’07.
IEEE Symposium on, pages 179–186, 2007.

L. Jia, J. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and S. Zdancewic. AURA: a
programming language for authorization and audit. ICFP, pages 27–38, 2008.

92 BIBLIOGRAPHY

S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the applied pi calculus. In
ESOP, pages 186–200, 2005.

S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of fair non-repudiation protocols.
Computer Communications, 25(17):1606–1621, 2002.

R. Küsters, T. Truderung, and A. Vogt. Accountability: Definition and relationship to verifia-
bility. 2010.

P. Maniatis. Historic integrity in distributed systems. PhD thesis, Citeseer, 2003.

R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge University Press,
1999.

C. A. Neff. A verifiable secret shuffle and its application to e-voting. ACM-CCS-2001, 2001.

S. P. NIST. Generally accepted principles and practices for securing information technology sys-
tems. Available on http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf, September
1996.

T. Okamoto and K. Ohta. Disposable zero-knowledge authentications and their applications to
untraceable electronic cash. In CRYPTO, volume 435 of Lecture Notes in Computer Science,
pages 481–496. Springer, 1989.

J. Peha. Electronic commerce with verifiable audit trails. INET, 1999.

G. D. Plotkin. Denotational semantics with partial functions. Unpublished lecture notes, CSLI,
Stanford University, July 1985.

Y. Régis-Gianas and F. Pottier. A Hoare logic for call-by-value functional programs. In MPC,
pages 305–335, 2008.

M. Roe. Cryptography and evidence. PhD thesis, University of Cambridge, 1997.

P. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In PLDI, pages 159–169, 2008.

B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. ACM Transactions
on Information and System Security, 2(2):159–176, May 1999.

A. Shamir, R.Rivest, and L. Adleman. Mental poker. Mathematical Gardener, pages 37–43,
1981.

N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and information flow
policies in fine. In ESOP, pages 529–549, 2010.

Y. Tsiounis. Efficient electronic cash: New notions and techniques, 1997. Ph.D. thesis.

J. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In IEEE Computer
Security Foundations Symposium, pages 177–191, 2008.

K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing web 2.0 applications
through replicated execution. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 173–186. ACM, 2009.

B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted and search-
able audit log. In Proceedings of Network and Distributed System Security Symposium 2004
(NDSS’04), San Diego, CA, February 2004.

D. N. Xu. Extended static checking for Haskell. In Haskell, pages 48–59, 2006.

BIBLIOGRAPHY 93

W. Xu, D. Chadwick, and S. Otenko. A PKI Based Secure Audit Web Server. In IASTED
Communications, Network and Information and CNIS, Phoenix, USA, November 2005. URL
http://www.cs.kent.ac.uk/pubs/2005/2295.

A. Yumerefendi and J. Chase. Trust but verify: Accountability for network services. In Pro-
ceedings of the 11th workshop on ACM SIGOPS European workshop, page 37. ACM, 2004.

A. Yumerefendi and J. Chase. The role of accountability in dependable distributed systems. In
Proceedings of HotDep, 2005.

L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to build
secure distributed systems. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy, pages 236–250, Oakland, California, May 2003.

http://www.cs.kent.ac.uk/pubs/2005/2295

94 BIBLIOGRAPHY

Appendix A

Preliminaries (complements)

Note We formalize our notations using the pretty-printing and the filtering functionalities
of OTT (http://moscova.inria.fr/~zappa/software/ott) –a tool for writing definitions of
programming languages.

A.1 Applied pi calculus

A.1.1 Reduction semantics

A −→ A′ A reduces to A′

c!〈x 〉.P1 | c?(x).P2 −→ P1 | P2
Comm

ifM = M thenP1 elseP2 −→ P1
If then

ifM = M ′ thenP1 elseP2 −→ P2
If else

A1 −→ A′
1

A1 | A2 −→ A′
1 | A2

Ctx para l

A −→ A′

ν r .A −→ ν r .A′ Ctx new name

A −→ A′

ν x .A −→ ν x .A′ Ctx new var

A1 ≡ A′
1

A′
1 −→ A′

2

A′
2 ≡ A2

A1 −→ A2
Redstruct

A.1.2 Structural equivalence

The rules are given in Figure A.2.

A.1.3 Labelled semantics

Abadi and Fournet describe three flavours of labelled semantics:

(1) “reference” semantics where only channel names and variables of base types can be output
directly, for other terms one has to create an active substitution and output the associated
variable; it leads to an equivalence relation coinciding with observational equivalence (a
barbed congruence);

95

http://moscova.inria.fr/~zappa/software/ott

96 APPENDIX A. PRELIMINARIES (COMPLEMENTS)

(2) “naive” semantics where any term can be output directly; it leads to a finer, often unusable
in applications, equivalence relation;

(3) “refined” semantics where only terms that can be derived by the environment can be
output directly; it leads to the same equivalence relation as the “reference” semantics.

We recall that a variable x can be derived from the extended process A when, for some
term M and extended process A′, we have A ≡ {M/x} |A′. We use the third variant of the
semantics where composite terms can be output but every exported restricted variable must be
derivable by the environment.

Additionally, when receiving a term, we may need to export it as an active substitution.
Since the term itself is already known by the environment, we deploy an active substitution
without restricting its variable, provided that the variable is locally fresh. So we add the

following labelled transition rule A
M/x−−−→ A|{M/x} when x /∈ fv(A) (rule Export).

The resulting labelled transition system is given in Figure A.1.

Figure A.1: Labelled transitions for applied pi
calculus

A
ψ−→ A′ A goes to A′ with a label

A −→ A′

A
τ−→ A′ Red

c?(x).P
c ? (M)−−−−−→ P {M/x}

In

c!〈M 〉.P c !<M >−−−−−−→ P
Out

A
c!c′−−→ A′ ∧ c 6= c′

ν c′ .A
ν r . c !< c′ >−−−−−−−−→ A′

OpenChannel

A
νũ. c !<M >−−−−−−−−→ A′ ∧ r ∈ M ∧ r /∈ u

r can be derived from νũ.{M /z} | A′

ν r .A
ν r . νũ. c !<M >−−−−−−−−−−−→ A′

OpenVar

A
ψ−→ A′ ∧ r does not occur inψ

ν r .A
ψ−→ ν r .A′

Scope

x fresh for A

A
M /x−−−→ A | {M /x}

Export

A1
ψ−→ A′

1 ∧BN(ψ) ∩ FN(A2) = ∅

A1 | A2
ψ−→ A′

1 | A2

Par

A1 ≡ A2 ∧A2
ψ−→ A3 ∧A3 ≡ A4

A1
ψ−→ A4

Struct

Figure A.2: Structural equivalence for applied
pi calculus
A ≡ A′ A is structurally equivalent to A′

A ≡ A | l .⊥
Fresh loc

a[P1 |P2] ≡ a[P1] | a[P2]
Par proc

A ≡ A | p[0]
Par 0

A1 | A2 | A3 ≡ A1 | A2 | A3
Par A

A | A′ ≡ A′ | A
Par C

ν u . p[0] ≡ p[0]
New 0

p[ν c .P] ≡ ν c . p[P]
New open

ν u . ν u ′ .A ≡ ν u ′ . ν u .A
New name C

u /∈ FN(A) ∪ FV (A)

A | ν u .A′ ≡ ν u .A | A′ New name Par

ν x . {M / x } ≡ 0
Alias

{M / x } | A ≡ {M / x } | A{M/x}
Subst

M = M ′

{M / x } ≡ {M ′ / x }
Rewrite

A.2. RCF 97

A.2 RCF

The syntax of normalized RCF expressions and types is already given in Section 2.4 (Fig-
ures 2.2 and 2.3, respectively). Below, we include the evaluation, subtyping, and typing rules.

A.2.1 Evaluation

Heating: AV A′

Axioms A ≡ A′ are read as both AV A′ and A′ V A.

AV A (Heat Refl)
AV A′′ if AV A′ and A′ V A′′ (Heat Trans)

AV A′ ⇒ let x = A in B V let x = A′ in B (Heat Let)
AV A′ ⇒ (νa)AV (νa)A′ (Heat Res)
AV A′ ⇒ (A � B)V (A′ � B) (Heat Fork 1)
AV A′ ⇒ (B � A)V (B � A′) (Heat Fork 2)

() � A ≡ A (Heat Fork ())
a!M V a!M � () (Heat Msg ())
assume C V assume C � () (Heat Assume ())

a /∈ fn(A′)⇒ A′ � ((νa)A)V (νa)(A′ � A) (Heat Res Fork 1)
a /∈ fn(A′)⇒ ((νa)A) � A′ V (νa)(A � A′) (Heat Res Fork 2)
a /∈ fn(B)⇒ let x = (νa)A in B V (νa)let x = A in B (Heat Res Let)

(A � A′) � A′′ ≡ A � (A′ � A′′) (Heat Fork Assoc)
(A � A′) � A′′ V (A′ � A) � A′′ (Heat Fork Comm)
let x = (A � A′) in B ≡ A � (let x = A′ in B) (Heat Fork Let)

Reduction: A→ A′

(rec f : T. fun x→ A) N → A{rec f : T. fun x→ A/f}{N/x}(Red Rec Fun)
(let (x1, x2) = (N1, N2) in A)→ A{N1/x1}{N2/x2} (Red Split)
(match M with h x→ A else B)→{

A{N/x} if M = h N for some N
B otherwise

(Red Match)

M = N →
{

true if M = N
false otherwise

(Red Eq)

a!M � a?→M (Red Comm)
assert C → () (Red Assert)
let x = M in A→ A{M/x} (Red Let Val)

A→ A′ ⇒ let x = A in B → let x = A′ in B (Red Let)
A→ A′ ⇒ (νa)A→ (νa)A′ (Red Res)
A→ A′ ⇒ (A � B)→ (A′ � B) (Red Fork 1)
A→ A′ ⇒ (B � A)→ (B � A′) (Red Fork 2)

A→ A′ if AV B,B → B′, B′ V A′ (Red Heat)

A.2.2 Subtyping

recvar(E) denotes the type variables occurring in subtyping constraints of E.
a l T denotes an environment entry for a channel.
A denotes the formula extracted from the assumptions of A.

98 APPENDIX A. PRELIMINARIES (COMPLEMENTS)

Subtype: E ` P <: P ′, E ` T <: T ′

(Sub Refl)
E ` P recvar(E) ∩ fnfv(P) = ∅

E ` P <: P

(Sub Fun)
E ` T ′1 <: T1

E, x : T ′1 ` T2 <: T ′2[x/x′]

E ` (x : T1 → T2) <: (x′ : T ′1 → T ′2)

(Sub Pair)
E ` T1 <: T ′1

E, x : T1 ` T2 <: T ′2[x/x′]

E ` (x : T ×1 T2) <: (x′ : T ′1 × T ′2)

(Sub Refine)
E ` P <: P ′ E, x : P,C ` C ′[x/x′]
E ` (x : P){C} <: (x′ : P ′){C ′}

(Sub Var)
E ` � (α <: α′) ∈ E

E ` α <: α′

(Sub Rec)
E,α <: α′ ` P <: P ′ α /∈ fnfv(P ′) α′ /∈ fnfv(P)

E ` (µα.P) <: (µα′.P ′)

A.2.3 Typechecking

Typechecking: E ` e : T

(Typ Unit)
E ` �

E ` () : unit

(Typ Var)
E ` � (x : T) ∈ E

E ` x : T

(Typ Refine)
E `M : T E ` C{M/x}

E `M : (x : T){C}

(Typ Pair)
E `M1 : T1 E, x : T1 `M2 : T2

E ` (M1,M2) : x : T1 × T2

(Typ Assume)
E ` � fv(C) ⊆ dom(E)

E ` assume C : (: unit){C}

(Typ Assert)
E ` C

E ` assume C : (: unit){C}
(Typ Fun)

E ` x : T1 → T2 <: T
E, f : T, x : T1 ` e : T2

E ` rec f : T.(fun x→ e) : x : T1 → T2

(Typ App)
E `M : x : T1 → T2

E ` N : T1

E ` (M N) : T2{N/x}
(Typ Let)

E ` e1 : T1

E, x : T1 ` e2 : T
x /∈ fv(T)

E ` let x = e1 in e2 : T

(Typ Split)
E `M1 : x : T1 × T2

E, x1 : T1, x2 : T2, : {(x1, x2) = M1} `M2 : T
x1, x2 /∈ fv(T)

E ` let (x1, x2) = M1 in M2 : T

(Typ Cons)
h : (T,U) E `M : T E ` U

E ` h M : U

(Typ Match Inl Inr Fold)
E `M : T h : (H,T)
E, x : H, : {h x = M} ` A : U
E, : {∀x.h x 6= M} ` B : U

E `match M with h x→ A else B : U

(Typ Res)
E, a l T ` A : U a /∈ fn(U)

E ` (νa)A : U

(Typ Send)
E `M : T (a l T) ∈ E

E ` a!M : unit

A.2. RCF 99

(Typ Recv)
E ` � (a l T) ∈ E

E ` a? : T

(Typ Fork)

E, : {A2} ` A1 : T1

E, : {A1} ` A2 : T2

E ` (A1 � A2) : T2

(Typ Subsum)
E ` e : T E ` T <: T ′

E ` e : T ′

(Typ Annot)
E ` e : T

E ` (e : T) : T

100 APPENDIX A. PRELIMINARIES (COMPLEMENTS)

Appendix B

Value commitment

B.1 Semantics of the source language

B.1.1 Equational theory

M = M ′ M is equal to M ′ in the equational theory

u = u
Atom

+1((x + y)) = x
Fst

+2((x + y)) = y
Snd

get idu(x . Idc (p)) = x . Idu
Idu of idc

get idu(x .Rd (p v)) = x . Idu
Idu of rd

get idc(x .Rd (p v)) = x . Idc (p)
Idc of rd

get prin(x . Idc (p)) = p
Prin of idc

get prin(x .Rd (p v)) = p
Prin of rd

read(x .Rd (p v)) = v
Read

is idc(x . Idc (p)) = ok
Testidc

is idu(x . Idu) = ok
Testidu

is rd(x .Rd (p v)) = ok
Testrd

B.1.2 Structural equivalence

A ≡ A′ A is structurally equivalent to A′

A ≡ A | l .⊥
Fresh loc

a[P1 |P2] ≡ a[P1] | a[P2]
Par proc

A ≡ A | p[0]
Par 0

A1 | A2 | A3 ≡ A1 | A2 | A3
Par A

101

102 APPENDIX B. VALUE COMMITMENT

A | A′ ≡ A′ | A
Par C

ν u . p[0] ≡ p[0]
New 0

p[ν c .P] ≡ ν c . p[P]
New open

ν u . ν u ′ .A ≡ ν u ′ . ν u .A
New name C

u /∈ FN(A) ∪ FV (A)

A | ν u .A′ ≡ ν u .A | A′ New name Par

ν x . {M / x } ≡ 0
Alias

{M / x } | A ≡ {M / x } | A{M/x}
Subst

M = M ′

{M / x } ≡ {M ′ / x }
Rewrite

B.1.3 Reduction semantics

A −→ A′ A reduces to A′

a[newloc (x , y).P] −→ ν l . (l .(a) | a[P{l/x}{l . Idu/y}])
Newloc

l fresh for a[P]

a[newloc (x , y).P] −→ ν l . (l . 0 (a) | a[P{l/x}{l . Idu/y}])
Newloc ext

Cap = 0 ∨ Cap = Idu

l .Cap (a) | a[commitM l (x).P] −→ l .Cap (a M) | a[P{l .Rd (a M)/x}]
Commit ext

l .(a) | a[commitM l (x).P] −→ l .(a M) | a[P{l .Rd (a M)/x}]
Commit

a1[c!〈M 〉.P1] | a2[c?(x).P2] −→ a1[P1] | a2[P2{M/x}]
Comm

adversary knowsH

0 −→ resolving(H)
AddRes

resolving(H) −→ 0
DelRes

a[ifM = M thenP1 elseP2] −→ a[P1]
If then

M 6= M ′

a[ifM = M ′ thenP1 elseP2] −→ a[P2]
If else

A1 −→ A′
1

A1 | A2 −→ A′
1 | A2

Ctx par

A −→ A′

ν u .A −→ ν u .A′ Ctx new

A1 ≡ A′
1 ∧A′

1 −→ A′
2 ∧A′

2 ≡ A2

A1 −→ A2
Struct

B.1.4 Ordering capabilities

C � C ′ C contains less data than C ′

⊥ � 0 ct
0

B.1. SEMANTICS OF THE SOURCE LANGUAGE 103

0 ct � Idu ct
0 ct

Idu fu (ct) � Idc ct
Idu

Idc fc (ct) � Rd ct
Idc

Cap (p H) � Cap (p H M)
Opt

C1 � C2

C2 � C3

C1 � C3
Trans

C � C
Refl

M capM
′ state label M corresponds to the capability M ′

u . Idu (p H) cap u . Idu ()
Idu of lab

u . Idc (p H M) cap u . Idc (p)
Idc of lab

u .Rd (p M) cap u .Rd (p M)
Rd of lab

Z cap Z
Int of lab

B.1.5 State transitions

C
state lab−−−−−→ C ′ label state lab changes the state C into C ′

C
!C ′−−→ CgC ′

Out

C ′ � C ∧ prin of(C ′) ∈ A

C
?C ′−−→ C

In owned

prin of(C ′) /∈ A

C
?C ′−−→ CgC ′

In

B.1.6 Labelled semantics

A
α−→ A′ A reduces to A′ with label α

a[c!〈M 〉.P]
c !M−−−→ a[P]

Send term

a[c?(x).P]
c?M−−−→ a[P{M

]

/x}]
Receive term

A
c?M−−−→ A′ ∧ C0

?locs(l,M)−−−−−→ C1

l .C0 | A
c?M−−−→ l .C1 | A′

Up in

A
c !M−−−→ A′ ∧ C0

! locs(l,M)−−−−−→ C1

l .C0 | A
c !M−−−→ l .C1 | A′

Up out

A
c !M−−−→ A′ ∧ (c 6= r ∧ r ∈ M)

ν r .A
ν r . c !M−−−−−−→ A′

Open

A1 −→ A2

A1
τ−→ A2

Red

104 APPENDIX B. VALUE COMMITMENT

A
α−→ A′ ∧ c /∈ α

ν c .A
α−→ ν c .A′ Scope

a[P1]
α−→ a[P ′

1] ∧BN(α) ∩ FN(A2) = ∅
a[P1] | A2

α−→ a[P ′
1] | A2

Par

A1 ≡ A2 ∧A2
α−→ A3 ∧A3 ≡ A4

A1
α−→ A4

Lab struct

B.2 Proofs

This section is structured as follows. Subsection B.2.1 explains the dependencies between
different parts of proofs and contains lemmas shared by the proofs of Theorems 3.1 and 3.2.
Subsection B.2.2 proves functional adequacy. Subsection B.2.3 proves security.

In what follows we assume that the sets of bound and free names and variables that occur in
labels and processes are disjoint. (The general case follows by renaming.)

B.2.1 Preliminary lemmas

Important note on our main theorems In what follows we prove functional adequacy
(Theorem 3.1bis) and security (Theorem 3.2bis) for the source systems extended with a reso-
lution store. In Lemma B.15 we show that transitions due to this store are optional, and thus
can be erased from any series of transitions between a usual system as defined in Section 3.2.4
and an extended system, to get transitions between two usual source systems. We then show
that our proofs still hold for initial Theorem 3.1 and a slight variant of the initial Theorem 3.2.

In this subsection we anticipate several lemmas to factor proof cases of our theorems. We
invite the reader to move to our theorems’ proofs (B.2.2, B.2.3) and come back to these lemmas
for references.

Lemma B.4 handles inputs of committable terms. Lemma B.6 handles inputs which do
not allow to blame the environment: already known terms or fresh terms that successfully
update the context. Lemmas B.8 handles input of a term, allowing to blame a principal.
Lemma B.7 shows how a principal is accused. Lemma B.9 handles outputs. Lemma B.10
handles the translation of terms. Lemmas B.2 and B.3 handle the translation of newloc and
commit constructs, respectively.

In the figure below arrows represent dependencies between lemmas.

B.2. PROOFS 105

Theorem 3.1bis

Functionality theorem (3.1)

LB.12: func,silent

LB.11: func,non-silent

Theorem 3.2bis

Security theorem(3.2)

LB.13: securityLB.2: newloc

LB.3: commit

LB.9: output

LB.6: compatible LB.4: committable

LB.8: incompatible

LB.7: accuse

LB.10: terms equality

LB.15: discarding continuations

Lemma B.1 (Discarding resolution store). For all well-formed source system A that contains
no target continuations, let T be a non empty parallel composition of target continuations, we
have that A | T τ−→

∗
A

Proof: Let A be a well-formed source system that contains no target continuations, let T be
a set of target continuations. We proceed by strong induction on the number of target terms in
T .

(1) Let T = resolving(M), then we can apply reduction rule DelRes, resulting in a silent
transition A | resolving(M)

τ−→ A.

(2) Let T = resolving(M1) | . . . | resolving(Mi) | resolving(M). By the induction hypothesis,

any of the terms M1...i can be discarded: A | T τ−→
∗

A | resolving(M). We can apply the

induction again: A | resolving(M)
τ−→
∗

A, thus we have A | T τ−→
∗

A.

�

Lemma B.2 (Creation of locations). The translation of newloc (x , y).P in an evaluation context
run by principal a within a well-formed source system reduces as

[[newloc (x , y).P]]a −→ ν sl . ν cl . ν l . ([[a[P{l/x}{l . Idu/y}]]] | [[l . 0 (a)]]) (B.2.1)

Proof: By definition, we have

[[newloc (x , y).P]]a

= ν sl ′ . ν cl . τ.(cl !〈None〉 | [[P]]a {cl/cx } {sl′/sx } {h(a+h(sl′))/l} {idu(l)/y})
≡ ν l . ν sl . ν sl ′ . ν cl . τ.(cl !〈None〉
| [[P]]a {cl/cx } {sl′/sl} {

sl/sx } {h(a+h(sl))/l} {idu(l)/y}) (B.2.2)

≡ ν sl . ν cl . ν l . τ.((cl !〈None〉 | (ν sl ′ . {sl ′/sl}) | {h(a + h(sl))/l})
| [[P]]a {cl/cx } {sl/sx } {idu(l)/y}) (B.2.3)

≡ ν sl . ν cl . ν l . τ.([[l . 0 (a)]] | [[P{l/x}{l . Idu/y}]]a) (B.2.4)

−→ ν sl . ν cl . ν l . ([[l . 0 (a)]] | [[P{l/x}{l . Idu/y}]]a) (B.2.5)

106 APPENDIX B. VALUE COMMITMENT

We introduce a substitution {sl ′/sl} for a fresh name sl; we restrict sl and l on toplevel in
B.2.2, since they are fresh. We introduce active substitutions for l and sl; as s′l does not occur in
P , we restrict it locally (B.2.3). In (B.2.4), we fold the translation of an uncommitted location
and of the continuation process that has received a reference to that location.

At the target level, the channel name cl and the cell identifier sl play the same role as
the location name l at the source level. They are used within the commit primitive and its
translation, and nowhere else.

Finally, (B.2.5) is the reduction of τ construct. �

Lemma B.3 (Commitment of a location). The translation of commitV x (x ′).P in an evalua-
tion context run by principal a within a well-formed source system is

[[commitV x (x ′).P]]a =

cx?().ν vx . ν wx . (ς(h(sx), h(sx + [[V]]))a | [[P]]a {rd(a , sx , [[V]] ,wx)/x ′})

Proof: By structural equivalence, using the definition of ς. �

Definition B.2.1 (Context compatibility). A well-formed source context Ca of the form

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

is compatible with label c?M if for all l ∈ L, there is C ′l such that Cl
?locs(l,M)−−−−−→ C ′l .

Definition B.2.2 (Context update). For any well-formed source context Ca of the form

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

for any label c?M , Ca ⊕M denotes the well-formed context obtained by updating its locations
according to M :

(Ca ⊕M)[] = νN .
(∏

l∈L l.(Cl + locs(l,M)) |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

Note All committable terms are compatible with any well formed source context (exception
l.Idu when Cl = 0 ct).

Lemma B.4 (Parsing a compatible committable term). For any well-formed source context Ca
for any source label M such that term M] is committable, for a target process P ,

[[Ca]][parsec [[M]]] P]
τ−→
∗

(Ca ⊕M)[P]

Proof: We proceed by induction on the structure of label M . We recall the definition of parsec:

parsec x P =

if is idu(x) = ok thenP

else if is prin(x) = ok and is pk(x) = ok thenP

else if is pair(x) = ok then parsec (+1 x) (parsec (+2 x) P)

else r !〈None〉

(1) If M = l . Idu then prin of(Idu) ∈ A and locs(l,M) = M] = Idu. Only rule In owned

applies to the assumption Cl
?Idu−−−→ C ′l , so necessarilyIdu � Cl and C ′l = Cl. The

translation of Cl must contain an active substitution {H /l}, so we have [[M]]] = idu(l).
The first test (is idu) in parse succeeds, so we have [[Ca]][parsec idu(l) P]

τ−→ [[Ca]][P].

B.2. PROOFS 107

(2) If M = l . Idu (e H) then e = prin of(Idu) /∈ A and locs(l,M) = M] = Idu (e H). Only

rule In applies to the assumption Cl
?Idu (e H)−−−−−−→ C ′l , so C ′l = ClgIdu (e H). (For all other

locations l0 ∈ L \ {l}, locs(l0,M) = ⊥, so C ′l0 = Cl0 .

For the update of l two cases are possible.

- If Idu (e H) � Cl , then C ′l = Cl and the translation of l.Cl already contains an active sub-

stitution {H /l}. Like in the previous case, we have [[M]]] = idu(l) and [[Ca]][parsec idu(l) P]
τ−→

[[Ca]][P].

- Otherwise, the received location l is unknown (and fresh for the source system and
its translation). We have [[M]]] = idu(H) and [[Ca]][parsec idu(H) P]

τ−→ [[Ca]][P]. By rule
Fresh loc, Ca [] ≡ l .⊥ | Ca [].

In the translation we introduce an active substitution for l, then fold the updated location
C ′l = ⊥gIdu (e H) = Idu (e H).

[[l .⊥]] | P ≡ (ν l . {H /l}) | P ≡ ν l . [[l . Idu (e H)]]|P

We thus have [[Ca]][P] ≡ [[C′a]][P].

(3) If M is a name of principal p, we have M] = M , for all l ∈ L, and locs(l,M) = ⊥.
The translation of the context contains an active substitution {prin(pk(xp))/p} where xp
is a nonce for honest principals p, or an arbitrary term for external principals. Thus in
parsec , the first is idu test fails, the next two (is prin and is pk) succeed, and we have:
[[Ca]][parsec [[M]]] P]

τ−→ τ−→ τ−→ [[Ca]][P].

(4) If M is a pair M1 +M2, then [[M]] = [[M1]]+[[M2]]. In parsec , the first two tests fail, the
third one (is pair) succeeds, and we have:

[[Ca]][parsec [[M]]] P]
τ−→ τ−→ τ−→ [[Ca]][parsec [[M1]] (parsec [[M2]] P)].

By assumption, for all l ∈ L, there is C ′l = Clg locs(l,M). Since locs(l,M) = locs(l,M1)g
locs(l,M2)), we know that for all l ∈ L, Clglocs(l,M1) exists. We first apply the induction
hypothesis on M1; context C′′a is well-formed, and for all l ∈ L′ there is C ′′l = Clglocs(l,M1),
and so C ′′lglocs(l,M2) = C ′l . We can now apply the induction on M2 and obtain another
well-formed context C′a:

[[Ca]][parsec [[M1]] (parsec [[M2]] P)]
τ−→
∗

[[C′′a]][parsec [[M2]] P]
τ−→
∗

[[C′a]][P].

�

Lemma B.5 (Decomposing parse for pairs). For any well-formed source contexts Ca, C′a, for
any marshallable term M ,for a target process P ,

if [[Ca]][parse [[M]] P] −→∗D [[C′a]][P] then

(1) [[Ca]][parse1 [[M]] P] −→∗D [[Ca]][P]

(2) [[Ca]][parse2 [[M]]] −→∗D [[C′a]][0]

Proof: Let Ca, C′a be well-formed source contextsM a marshallable termM ,P a target process,
and [[Ca]][parse [[M]] P] −→∗D [[C′a]][P]. By definition,

[[Ca]][parse [[M]] P] = [[Ca]][parse1 [[M]] (P | parse2 [[M]])] −→∗D [[Ca]][(P | parse2 [[M]])]

(1) The process parse2 [[M]] is passive so we also have, [[Ca]][parse1 [[M]] P] −→∗D [[Ca]][P].

(2) [[Ca]][P | parse2 [[M]]] −→∗D [[C′a]][P]. The process P is passive, so we also have

[[Ca]][parse2 [[M]]] −→∗D [[C′a]][0].

108 APPENDIX B. VALUE COMMITMENT

�

The next lemma states that the parse function succeeds, and all locations are updated
according to the source rules, if these rules apply to the received term.

Lemma B.6 (Parsing a compatible term from environment). For any well-formed source con-
text Ca for any source label M , for a target process P , if Ca is compatible with M then

[[Ca]][parse [[M]]] P]
τ−→
∗

(Ca ⊕M)[P].

Proof: We proceed by induction on the structure of label M . We recall the definition of parse:

parse1 x P =

if is rd(x) = ok then

if check idc(get idc(x)) then parsec read(x) P else r !〈None〉
else if is idc(x) = ok then if check idc(x) thenP else r !〈None〉
else if is pair(x) = ok then parse1 (+1 x) (parse1 (+2 x) P)

else parsec x P
parse2 x =

if is rd(x) = ok then repl log !〈get idc(x)〉
else if is idc(x) = ok then repl log !〈x 〉
else if is pair(x) = ok then (parse2 (+1 x) | parse2 (+2 x))

parse x P = parse1 x (P | parse2 x)

(1) If M = l.Rd (a V) then a ∈ A, locs(l,M) = Rd (a V)g locs(l,M), and M] = M . Only

rule In owned applies to the assumption Cl
?Rd (a V)−−−−−−→ C ′l , so necessarilyRd (a V) � Cl

and C ′l = Cl = Rd (a V). The translation of Cl must assign (with active substitutions
) sl, {vl = h(sl) + h(sl + [[V]])}, {wl = sign(vl , sk(mp))} and logs idc(p , vl , wl) such that
[[M]]] = rd(p , sl , [[V]] , wl).

In the call parse rd(p , sl , [[V]] , wl) P , the first test (is rd) succeeds yielding a silent transi-
tion. The second test is evaluated by unfolding the definition of check idc and applying
the equations that define get idc,idc1,idc2, idc3,check:

check idc(get idc(rd(p , sl , [[V]] , wl)))

= check idc(idc(p , h(sl) + h(sl + [[V]]) , wl))

= verify(h(sl) + h(sl + [[V]]) , wl , p) = ok.

The checks succeed, so [[Ca]][parse [[M]]] P]
τ−→ τ−→ P2 with the continuation

P2 = [[Ca]][parsec read([[M]]]) (P | parse2 [[M]]])].

Since read([[M]]]) = [[V]], V is committable and locs(l,V) � Cl , we can apply Lemma B.4:

P2
τ−→
∗

[[Ca]][P | parse2 [[M]]]]

The first test succeeds in parse2 succeeds, and reduces to replicated output on log, which
we discard since it is already contained in [[l . C]]:

[[Ca]][P | parse2 [[M]]]]
τ−→ [[Ca]][P | repl log !〈idc(p , vl , wl)〉] ≡ [[Ca]][P]

We use the equivalence Repl repl:

repl log !〈idc(p , vl , wl)〉 | repl log !〈idc(p , vl , wl)〉 ≡ repl log !〈get idc([[M]])〉

B.2. PROOFS 109

(2) If M = l .Rd (e0 H V), then e0 6∈ A, locs(l,M) = Rd (e0 H V)g locs(l,M), and M] =

l.Rd (e0 V). Only rule In applies to the assumption Cl
?Rd (e0 H V)−−−−−−−−→ C ′l , so necessarily

C ′l = ClgRd (e0 H V).

Two cases depending on Cl are possible.

- If Rd (e0 H V) � Cl then the translation of Cl must contain active substitutions sl, vl, wl
such that [[M]]] = rd(p , sl , [[V]] , wl). Then no update is done and parse reduces exactly
as in case M = Rd (a V).

- Otherwise Cl � Rd (e0 H V) and Cl 6= Rd (e0 H V), the environment is sending new
data.

[[M]] = rd(e0 , H , [[V]] , sign(h(H) + h(H + [[V]]) , sk(me0))).

The first test in parse1 and the check idc test succeed, so the process reduces to P ′

in the same context. By assumption, context Ca is compatible with M , so there exists
C ′′l = Clglocs(l,M), and by definition locs(l,M) = Rd (e0 H V)glocs(l,V), so Clglocs(l,V)
exists. Since read([[M]]]) = [[V]] and V is committable we can apply Lemma B.4

[[Ca]][parse [[M]]] P]
τ−→
∗

[[Ca]][parsec [[V]] (P | parse2 [[M]]])]
τ−→
∗

(Ca ⊕V)[P | parse2 [[M]]]]

By We have that (Ca ⊕M) is compatible with V . The first test in parse2 succeeds, and
reduces to replicated output on log:

P | parse2 [[M]]]
τ−→ P | repl log !〈get idc([[M]]])〉

= ν v ′l . ν w ′l . (P | repl log !〈idc(e0 , v ′l , w ′l)〉σ) = P ′

with σ = {h(H)+h(H+[[V]])/v ′
l
}{sign(v ′

l , sk(me0))/w ′
l
} (B.2.6)

We anticipate some fresh local substitutions (B.2.6). We compute the remaining update
for location l, by applying structural equivalences to P ′ and the concerned part of the
context [[l .C ′l]] | P ′.
Here are different cases depending on C ′l .

– If C ′l = Idc (e0 (M1 + M2) V) satisfying the definition of fc function, that is h(H)+
h(H +[[V]]) = M1+M2, we have

[[l .C ′l]] | P ′

= [[l . Idc (e0 (M1 + M2) V)]] | P ′

= ϕ(M1,M2)e0 | (P | repl log !〈idc(e0 , vl , wl)〉 {h(H)+h(H+[[V]])/vl} {
sign(vl , sk(me0))/wl

})(B.2.7)

≡ ϕ(M1,M2)e0 | P (B.2.8)

≡ ν sl . ((ϕ(M1,M2)e0 | {H /sl}) | P) (B.2.9)

≡ [[l .Rd (e0 H V)]] | P (B.2.10)

≡ [[l .C ′′l]] | P

In (B.2.7) we translate Idc, and as we unfold P ′ we equate local substitutions v′l, w
′
l to

the active substitutions vl, wl defined by ϕ; in (B.2.8) we use Repl repl to merge the
replication with that contained within ϕ; in (B.2.9) we introduce fresh substitution sl for
H and restrict it on top level; in (B.2.10) we fold the translation of Rd tagged location.
We have indeed l.C ′′l = l .Rd (e0 H V) = l.Idc (e0 (M1 + M2) V)gRd (e0 H V) = l.C ′lg
locs(l,M). We thus constructed a well-formed context C′′a such that ∀l0 ∈ L \ {l}
C ′′l0 = Clglocs(l0,M).

110 APPENDIX B. VALUE COMMITMENT

– If C ′l = Idu (e0 H ′) satisfying the definition of fc and fu functions, that is h(e0+h(H)) =
H ′, we have

[[l . Idu (e0 H ′)]] | P ′

≡ {H ′/l} | (ς(h(H), h(H + [[V]]))e0 | P) (B.2.11)

≡ {H /sl} | ϕ(h(H), h(H + [[V]]))e0 | P (B.2.12)

≡ [[l .Rd (e0 H V)]]|P (B.2.13)

≡ [[l .C ′′l]] | P

In (B.2.11) we introduce fresh names sl, vl, wl and transform substitutions from σ into
(not restricted) active substitutions which fold the ς process. In (B.2.12) we introduce
a fresh (not restricted) active substitution for sl, and fold the definition of ϕ process;
in (B.2.13) we fold the translation of Rd tagged location. We have indeed l.C ′′l =
l .Rd (e0 H V) = l.Idu (e0 H ′)gRd (e0 H V) = l.C ′lglocs(l,M).

– If C ′l = ⊥ then we have

[[l .⊥]] | P ′

≡ 0 | ({H /sl} | ϕ(h(H), h(H + [[V]]))e0 | P {rd(e0 , sl , [[V]] ,wl)/x})
≡ ([[l .Rd (e0 H V)]]|P{[[l .Rd (e0 V)]]/x})
≡ [[l .C ′′l]] | P {[[M

]]]/x}

We introduce (not restricted) fresh variables l, sl, vl, wl to represent location state of l.
The rule Up in applies: C ′′l = Rd (e0 H V) = ⊥gRd (e0 H V) = C ′lgC .

In each case we thus have [[C′a]][P ′] ≡ [[C′′a]][P {[[M]]/x}]. So

[[Ca]][parse [[M]] P {[[M]]/x}]
τ−→
∗

[[C′′a]][P {[[M]]/x}]

where all locations occurring in M are updated correctly.

(3) If M = l.Idc (a) then a ∈ A, locs(l,M) = M] = Idc (a). Only rule In owned applies to

the assumption Cl
?Idc (a)−−−−−→ C ′l , so necessarilyIdc (a) � Cl and C ′l = Cl. Thus we have

[[M]] = idc(a , vl , wl) such that the translation of l.Cl assigns (with active substitutions)
vl = h(sl) + h(sl + [[V]]) and wl = sign(vl , sk(ma)) and also logs idc(a , vl , wl).

In parse1 idc(a , vl , wl) P {[[M]]]/x} | parse2 [[M]]] the first test (is rd) fails, the second one
(is idc) succeeds, yielding two silent transitions. The third test is evaluated by applying
the equations that define idc1,idc2, idc3,check:

check idc(idc(a , vl , wl)) = verify(vl , wl , a) = ok.

The check (and thus also check idc) test succeeds by construction. In parse2 , the is rd test
fails, the is idc test succeeds and reduces into a replicated output on log.

[[Ca]][parse [[M]]] P {[[M]]]/x}]
τ−→ τ−→ τ−→ [[Ca]][P {[[M]]]/x} | parse2 [[M]]]

τ−→ τ−→ [[Ca]][P {[[M]]]/x} | repl log !〈[[M]]]〉].

Now since the translation of l.Cl within Ca contains the process repl log !〈idc(a , vl , wl)〉, we
can apply the equivalence Repl repl:

repl log !〈[[M]]]〉 | repl log !〈idc(a , vl , wl)〉 ≡ repl log !〈idc(a , vl , wl)〉

and obtain
[[Ca]][parse [[M]]] P]

τ−→
∗

[[Ca]][P | repl log !〈[[M]]]〉] ≡ [[Ca]][P]

B.2. PROOFS 111

(4) If M = l . Idc (e0 H V), then e0 6∈ A, locs(l,M) = Idc (e0 H V), and M] = l.Idc (e0). Only

rule In applies to the assumption Cl
?Idc (e0 H V)−−−−−−−−→ C ′l , so necessarily C ′l = ClgIdc (e0 H V).

Two cases depending on Cl are possible.

- If Idc (e0 H V) � Cl then the translation of Cl must contain active substitutions sl, vl, wl
such that [[M]]] = idc(p , vl , wl). Then no update is done and parse reduces exactly as in
case M = Idc (a).

- Otherwise Cl � Idc (e0 H V), the environment is sending new data.

[[M]] = idc(e0 , H , sign(H , sk(me0))).

In parse1 , the first is rd test fails, is idc and check idc tests succeed (by translation); in
parse2 , the same is rd test fails and is idc test succeeds, and produces a replicated output
on log:

parse1 [[M]]] P {[[M]]]/x}
τ−→
∗

P {[[M]]]/x} | parse2 [[M]]]
τ−→
∗

P {[[M]]]/x} | repl log !〈[[M]]]〉 = P ′.

We compute the update for location l, by applying structural equivalences to P ′ and the
concerned part of the context [[l .Cl]] | P ′.
Here are different cases depending on Cl.
– If Cl = Idu (e0 H ′) satisfying the definition of fu function, that is h(e0 + (+1 H)) = H ′,

we have

[[l . Idu (e0 H ′)]] | P ′ (B.2.14)

≡ {H ′/l} | ({H /vl} | {sign(vl , sk(me0))/wl} | P ′) (B.2.15)

≡ {H ′/l} | (ς((+1 H), (+2 H))e0 | P {idc(e0 , vl ,wl)/x}) (B.2.16)

≡ ϕ((+1 H), (+2 H))e0 |P{[[l . Idc (e0)]]/x} (B.2.17)

≡ [[l . Idc (e0 H V)]]|P{[[l . Idc (e0)]]/x}
≡ [[l .C ′l]]|P{[[M

]]]/x}

In B.2.14 we introduce fresh active substitutions for vl, wl and we fold them, as well
as the replicated logging, into the definition of ς; in B.2.16 we fold the definition of ϕ;
in B.2.17 we fold the translation of the updated location.
We have indeed l.C ′l = l . Idc (e0 H V) = l.Idu (e0 H ′)gIdc (e0 H V) = l.Clglocs(l,M).

– If Cl = ⊥ then we have

[[l .⊥]] | P ′ (B.2.18)

≡ ϕ((+1 H), (+2 H))e0 | P {idc(e0 , vl ,wl)/x}
≡ [[l . Idc (e0 H V)]] | P {[[M]]]/x}

In B.2.18 we introduce fresh substitutions to represent location state of l, including the
replicated log entry, using ϕ. Then we fold the translation of the location. We have
indeed l.C ′l = l . Idc (e0 H V) = l.⊥gIdc (e0 H V) = l.Clglocs(l,M).

For locations l0 other than l, locs(l0,M) = ⊥, so C ′l0 = Cl0 .

In both cases we thus have [[Ca]][P ′] ≡ [[C′a]][P {[[M]]]/x}].
(5) If M = l . Idu or M = l . Idu (e H) then its translation [[M]]] is Idu(l) or idu(H) respec-

tively. The first two tests in parse1 fail, the third one (is idu) succeeds, so we have

[[Ca]][parse [[M]]] P {[[M]]]/x}]
τ−→ τ−→ τ−→ [[Ca]][parsec [[M]]] (P {[[M]]]/x} | parse2 [[M]]])]

.

112 APPENDIX B. VALUE COMMITMENT

Since M is committable, by Lemma B.4, we have

[[Ca]][parsec [[M]]] (P {[[M]]]/x} | parse2 [[M]]])]
τ−→
∗

[[C′a]][P {[[M]]]/x} | parse2 [[M]]]]

All the three tests in parse2 fail so it reduces to 0, thus

[[C′a]][P {[[M]]]/x} | parse2 [[M]]]]
τ−→ τ−→ τ−→ [[C′a]][P {[[M]]]/x}]

(6) If M = p where p is a name of a principal, Lemma B.4 applies as for the case Idu.

(7) If M is a pair M1+M2, then [[M]] = [[M1]]+[[M2]]. The first three tests of parse1 fail, the
fourth is pair succeeds:

[[Ca]][parse [[M]] P]
τ−→
∗

[[Ca]][parse [[M1]] (parse1 [[M2]] P | parse2 [[M]])]

By decomposing the assumption, we know that for all l ∈ L both Cl g locs(l,M1) and
Clglocs(l,M2) exist. We first apply the induction hypothesis on M1 :

[[Ca]][parse [[M1]] (parse1 [[M2]] P | parse2 [[M]])]
τ−→
∗

[[C′a]][parse1 [[M2]] (P | parse2 [[M]])]

By Lemma B.5(1),

[[Ca]][parse1 [[M1]] (parse1 [[M2]] (P | parse2 [[M]]))]
τ−→
∗

[[Ca]][parse1 [[M2]] (P | parse2 [[M]])]

By induction hypothesis on M2 and by Lemma B.5(1),

[[Ca]][parse1 [[M2]] (P | parse2 [[M]])] −→∗D [[Ca]][P | parse2 [[M]]].

The first two tests of parse2 fail, the third is pair succeeds:

[[Ca]][P | parse2 [[M]]] −→∗D [[Ca]][P | parse2 [[M1]] | parse2 [[M2]]]

Applying Lemma B.5(2) to M1 and M2 we get,

[[Ca]][P | parse2 [[M]]] −→∗D [[C′a]][P | 0]

By transitivity,
[[Ca]][parse [[M]] P]

τ−→
∗

[[Ca]][P]

(8) The reasoning is the same for other source constructors. �

The parse function enables blaming a principal who owns a received capability that is not
compatible with the context.

Lemma B.7 (Accusing a principal). For any two capabilities l.C = l.Idc ct and l.C ′ = l.Idc ct ′

such that fu (ct) = fu (ct ′) and neither C � C ′ nor C ′ � C , we have

Q ([[l . C]]) | repl log !〈[[l . C ′]]〉 ⇓ prin of(C)

Proof: Let C = Idc (e H V) and C ′ = Idc (e ′H ′V ′) . The translation of the Idc capabilities
is as follows: l.Idc (e H V) = idc(pk(me) , H , sign(H , sk(me)))

and l.Idc (e H ′V ′) = idc(pk(me) , H ′ , sign(H ′ , sk(me))).
We recall the definition of Q (y1).

Q (y1)
def
= log?(y2).if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) 6= idc2(y2) then bad !〈get prin(y1)〉

B.2. PROOFS 113

The continuation Q ([[l . C]]) communicates with the replicated output on log. We have

if check idc([[l . C]]) and check idc([[l . C ′]]) then

if get idu([[l . C]]) = get idu([[l . C ′]]) and idc2([[l . C]]) 6= idc2([[l . C ′]])

then bad !〈get prin([[l . C]])〉 | repl log !〈[[l . C ′]]〉

The resolution continuation can now reduce. By assumption, the Idcs are valid, so the first
idc-integrity tests succeed. We apply the equations defining get idu and idc2.

The assumption fu (ct) = fu (ct ′) implies that e = e′ and h(pk(me) + (+1 H)) = h(pk(me′) +
(+1 H ′)), and since h is injective, we have (+1 H) = (+1 H ′). So the Idus comparison succeeds:

get idu(idc(pk(me) , H , sign(H , sk(me)))) = idu(h(pk(me) + (+1 H)))
= idu(h(pk(me′) + (+1 H ′))) = get idu(idc(pk(me′) , H ′ , sign(H , sk(me′))))

Another assumption says that neither C � C ′ nor C ′ � C , which implies H 6= H ′ and
V 6= V ′. Thus the capabilities contain different values:

idc2(idc(pk(me) , H , sign(H , sk(me)))) = H
idc2(idc(pk(me) , H ′ , sign(H ′ , sk(me)))) = H ′

All tests within Q succeed, so after three silent transitions, the output on bad is enabled:

Q ([[l . C]]) | repl log !〈[[l . C ′]]〉 τ−→ τ−→ τ−→ bad !e−−−→ repl log !〈[[l . C ′]]〉

Indeed, we have get prin(idc(pk(me) , vl , wl)) = pk(me) that is indeed the translation of prin of(C).

�

Definition B.2.3 (Related capabilities). Two source capabilities l.C1 and l.C2 are related if
for all ct1, ct2 such that Idu ct1 � C1 and Idu ct2 � C2, we have ct1 = ct2.

Lemma B.8 (Parsing an incompatible term). For any well-formed source context Ca,

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

for any marshallable source term M , for any translation of a process P , if there is a location
l ∈ L such that Cl and locs(l,M) are related but their sup does not exist, then

[[Ca]][parse [[M]] P] ⇓ prin of(locs(l,M)) and prin of(locs(l,M)) /∈ A.

Proof: Let Ca be a well-formed source context. Let l ∈ L be a location, such that neither
Cl � locs(l,M) nor locs(l,M) � Cl .

We proceed by structural induction on terms M such that locs(l,M) 6= ⊥, namely on capa-
bilities and pairs.

– IfM = l .Rd (e ′H ′V ′), then the faulty capability is necessarily l. Indeed, M is well-sorted,
and thus it may only contain Idu capability which is comparable to any capability in our
order. Rd capabilities are not comparable to Rds and Idcs containing value V ′ 6= V . In
parse1 code, and parse2, tests is rdc and check idc on the received value [[l .Rd (e ′H ′V ′)]]
succeed: parse rd(e ′ , H ′ , [[V ′]] , sign(h(H ′)+h(H ′+[[V ′]]) , sk(me′))) P

τ−→ τ−→ τ−→ τ−→ P |R3 where
R3 = repl log !〈idc(e ′ , h(H ′) + h(H ′ + [[V ′]]) , sign(h(H ′) + h(H ′ + [[V ′]]) , sk(me′)))〉
= repl log !〈[[l . Idc (e ′ h(H ′)+h(H ′+[[V ′]]) V ′)]]〉.
We now consider the interactions of R3 and of the resolution process R which is always
available in the translation.

114 APPENDIX B. VALUE COMMITMENT

We recall the definition of the resolution process:

Q (y1)
def
= log?(y2).if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) 6= idc2(y2) then bad !〈get prin(y1)〉

R
def
= (repl log?(y1).Q (y1)) | (repl log !〈None〉)

Process R can receive a first Idc provided by R2. We have

R3 | R −→ R3 | R | Q([[l . Idc (e ′ h(H ′)+h(H ′+[[V ′]]) V ′)]])

– Suppose that Cl = Rd (e H V) and V ′ 6= V .
By assumption, l.locs(l,M) = l.Rd (e ′H ′V ′) and l.Cl = l.Rd (e H V) are related. We
use the ordering rule Idc, then Idu and transitivity to derive Idu fu (fc (e ′H ′V ′)) �
Rd (e ′H ′V ′) and Idu fu (fc (e H V)) � Rd (e H V).
By definition of related capabilities, Idu fu (fc (e ′H ′V ′)) = Idu fu (fc (e H V)). We
derive the equality fu (fc (e ′H ′V ′)) = fu (fc (e H V)).
The translation [[l .Cl]] contains the process

R2 = repl log !〈[[l . Idc (e h(H)+h(H +[[V]]) V)]]〉

We can apply Lemma B.7 and get

R2 | Q([[l . Idc (e ′ h(H ′)+h(H ′+[[V ′]]) V ′)]] ⇓ e

– Suppose Cl = Idc (e H V) and V 6= V ′.
By assumption, l.locs(l,M) = l.Rd (e ′H ′V ′) and l.Cl = l.Idc (e H V) are related. and
Idu ct ′ � Cl . Using the ordering rules Idc, Idu and transitivity, we get
Idu fu (fc (e ′H ′V ′)) � Rd (e ′H ′V ′) and Idu fu (e H V) � Idc (e H V).
By definition of related capabilities, Idu fu (fc (e ′H ′V ′)) = Idu fu (e H V). We derive
the equality fu (fc (e ′H ′V ′)) = fu (e H V).
The translation of [[l .Cl]] contains the process

R2 = repl log !〈[[l . Idc (e H V)]]〉

We can apply Lemma B.7 and get

R2 | Q([[l . Idc (e ′ h(H ′)+h(H ′+[[V ′]]) V ′)]] ⇓ e

– If M = l . Idc (e M1+M2 V), then the faulty capability is necessarily l. As in the previous
case, there are two possibles values for Cl : Cl = Idc (e H ′V ′) or Cl = Rd (e H ′V ′).

– If M = l . Idu, the hypothesis does not hold as l . Idu is comparable to any capability in
our order.

– If M = M1+M2, then after four transitions (four failures + a success), the process makes
recursive calls of parse on subterms:

[[Ca]][parse [[M1 + M2]] P]
τ−→
∗

[[Ca]][parse [[M1]] parse [[M2]] P].

We can apply the induction hypotheses to the subterms M1 and M2. If the faulty ca-
pability l is in M1, then [[Ca]][parse [[M1]] P ′] ⇓ e. Otherwise P ′ = [[Ca]][parse [[M2]] P] ⇓ e.
�

Lemma B.9 (Send updates). For a any target process P within a translation of a well-formed
source context Ca, Let Da be a source context where x is bound in the hole:

Da[] =
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T

Any marshallable source term M can be sent from a well-formed source context, so that the
resulting context is also well-formed:

νN .[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M 〉.P]

νũ. c !<M >−−−−−−−−→ νN \ ũ.[[
(∏

l∈L l.(Clglocs(l,M)) | Da
)
]].

B.2. PROOFS 115

Proof: We proceed by induction on the structure of M .

– M = p, a name of a principal. We have [[p]] = p. Names of principals are not restricted;
they are translated into homonymous variables bound with toplevel active substitutions,

thus [[Ca]][c!〈p〉.P]
c!p−−→ [[Ca]][P].

– M = M1 + M2, a constructed value.
We have [[M]] = [[M1]] + [[M2]]. Applying the induction hypothesis on M1 and M2 we have

νN .[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M1〉.P]

νũ1. c !<M1>−−−−−−−−−→ νN \ ũ1.[[
(∏

l∈L l.(Clglocs(l,M1)) | Da
)
]]

νN .[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M2〉.P]

νũ2. c !<M2>−−−−−−−−−→ νN \ ũ2.[[
(∏

l∈L l.(Clglocs(l,M2)) | Da
)
]]

Let ũ = ũ1 ∪ ũ2. By definition, locs(l,M1+M2) = locs(l,M1)glocs(l,M2) so

νN .[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M 〉.P]

νũ. c !<M >−−−−−−−−→ νN \ ũ.[[
(∏

l∈L l.(Clglocs(l,M)) | Da
)
]]

– M = l.Cap ct capability
For all capabilities except Rd, locs(l, l .Cap ct) = Cap ct , and locs(l ′, l .Cap ct) = ⊥ for
l′ 6= l. We have

[[l .Cl]]|c!〈[[l .Cap ct]]〉.P νũ. c ! [[l .Cap ct]]−−−−−−−−−−→ [[l .ClgCap ct]]|P

Since the translation of l.Cap(ct) is the same for all Cap, [[l .Cl]] = [[l . (ClgCap ct)]] =
[[l .Cap ct]] = [[l .C ′l]]. (Note that if Cl � Cap ct then necessarily prin of(Cl) ∈ A.)
The table D contains the label restrictions ũ given a Cl and an output ν ũ . c !M(in red
what is not disclosed directly, but can derived). Column “exported” recalls what variables
are not restricted on top of Cl by translation. Empty set is denoted with -. As in source
rule

C
!C ′
−−→ CgC ′

Out

in the translation we have D[Cl][exported] ∪ D[Cl][C] = D[exported][ClgC]

Cl\C exported Idu Idc (p) Rd (p V)

⊥ - l l,vl, wl l, vl,wl, sl

Idu l - vl, wl vl,wl, sl

Idc (p H V) l, vl, wl - - sl

Rd (p H V) l, vl, wl, sl - - -

[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M 〉.P]

νũ. c ! [[M]]−−−−−−→ νN \ ũ.[[
(∏

l∈L l.(Clglocs(l,M)) | Da
)
]]

If M = l.Rd (a0 V) capability, then we should also apply the induction hypothesis on V :

[[
(∏

l∈L l.Cl | Da
)
]] [c!〈V 〉.P]

νũ1. c !<V >−−−−−−−−→ νN \ ũ1.[[
(∏

l∈L l.(Clglocs(l,V)) | Da
)
]]

For this case, we have u = u1∪ Disclosed[Clglocs(l,V)][Rd (a0 V)].

[[
(∏

l∈L l.Cl | Da
)
]] [c!〈M 〉.P]

νũ. c ! [[l .Rd (a0 V)]]−−−−−−−−−−−−→ νN \ ũ.[[
(∏

l∈L l.(Clglocs(l,M)) | Da
)
]]

�

116 APPENDIX B. VALUE COMMITMENT

Lemma B.10 (Equality of translated terms). For all source terms M1 and M2 within a well-
formed source context, we have M1 = M2 if and only if [[M1]] = [[M2]].

Proof: By case analysis on the source rule used to derive M1 = M2.
– Atom

If for some name or variable u, M1 = M2 = u, then trivially [[M1]] = [[M2]] = u. If M1 = u
and M2 = v with u 6= v then [[M1]] = u, [[M2]] = v , and so [[M1]] 6= [[M2]].

– Fst
Let M1 = +1((M2 + M3)). Then [[M1]] = (+1 [[M2]] + [[M3]]). By definition of target
projections, we have [[M1]] = [[M2]]. In the same way, M1 6= M2 implies [[M1]] 6= [[M2]].
Similar for the case Snd.

– Idu of idc
Let M1 = get idu(x . Idc (p)) and M2 = x . Idu. We have

[[M1]] = get idu(idc(p , vx , wx)) = idu(h(p + (+1 vx))) and [[M2]] = idu(x).

Since the translation of the context is well-formed, it provides active substitutions
{h(p + M ′

1)/x} and {M ′
1 + M ′

2/vx} for some M ′1,M
′
2.

So [[M1]] = idu(h(p + (+1 vx))) = idu(h(p + M ′
1)) = idu(x) = [[M2]].

– Idu of rd
Let M1 = get idu(x .Rd (p v)) and M2 = x . Idu. We have

[[M1]] = get idu(rd(p , sx , [[v]] , wx)) = idu(h(p + h(sx))), and [[M2]] = idu(x).

Since the translation of the context is well-formed, it provides an active substitution
{h(p + h(sx))/x}. So [[M1]] = idu(h(p + h(sx))) = idu(x) = [[M2]].

– Idc of rd
Let M1 = get idc(x .Rd (p v)) and M2 = x . Idc (p). We have

[[M1]] = get idc(rd(p , sx , [[v]] , wx)) = idc(p , h(p)+h(sx+[[v]]) , wx), and [[M2]] = idc(p , vx , wx).

Since the translation of the context is well-formed, it provides exactly the active substi-
tution {h(sx) + h(sx + [[v]])/vx}. So [[M1]] = idc(p , vx , wx) = [[M2]].

– Prin of idc
Let M1 = get prin(x . Idc (p)) and M2 = p. We have [[M1]] = get prin(idc(p , vx , wx)) = p =
[[M2]]. Similar for the case Prin of rd.

– Read
Let M1 = read(x .Rd (p v)) and M2 = v. We have [[M1]] = read(rd(p , sx , [[v]] , wx)) = [[v]] =
[[M2]].

– Test idu
Let M1 = is idu(x . Idu) and M2 = ok. We have [[M1]] = is idu(idu(x)) = ok = [[M2]]. Similar
for the case Test rd, Test idc.

�

B.2.2 Functional adequacy

Lemma B.11 (Functional adequacy for one source non-silent step). Let A be a well-formed

source system. For all transition step A
φ−→ A′, such that φ 6= τ , there exists a trace [[[A]]]

ψ−→
∗

[[[A′]]].

Proof: Let A be a well-formed source system.

A ≡ νN
(∏

l∈L l.Cl |
∏
a′∈A a

′[Pa′] | φ| T
)

B.2. PROOFS 117

Let Ca be the well formed source context built on A where Pa is replaced with a hole:

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

Suppose that for some A′, A
φ−→ A′. Since A is well-formed, A′ is also well-formed. Let C′a be

the well formed source context built on A′ = C′a [P ′a]:

C′a[] = νN ′.
(∏

l∈L′ l.C
′
l |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ′ | T ′
)

Since A is well-formed, we have A
φ−→ C′a [P ′a] for some label φ 6= τ and for some system A′

based on context C′a. We perform a case analysis on the source label φ.

Label φ is necessarily input or output.

Case Input If A makes a transition labelled with c ? (M) then for some a, P1, and P2 we
have Pa ≡ c?(x).P1 |P2 and P ′a ≡ P1{M/x} |P2.

By definition, the transition A
c?M−−−→ A′ is derived by applying first the base rule Receive term

a[c?(x).P]
c?M−−−→ a[P{M]

/x}]
Receive term

then the context rule Up infor each l ∈ L: A
c?M−−−→ A′ ∧ C0

?locs(l,M)−−−−−→ C1

l .C0 | A
c?M−−−→ l .C1 | A′

Up in

 ∀l ∈ L

To be received by A, all capabilities l ∈ L are subject to the following rules, by instantiating
C to Cl and C ′ to locs(l,M):

C ′ � C ∧ prin of(C ′) ∈ A

C
?C ′
−−→ C

In owned
prin of(C ′) /∈ A

C
?C ′
−−→ CgC ′

In

Thus in the resulting context, we have for all l ∈ L, C ′l = Clg locs(l,M) (when locs(l,M) = ⊥,
we have C ′l = Cl).

In the translation [[P]]a = (ν r . ((c?(x).parse x [[P1]]a) | repl r?().c?(x).parse x [[P1]]a)) | [[P2]]a .
Since Pa can receive a source term M , the translation of Pa can receive the translation of M :

[[Ca]][[[P]]a]
c ? ([[M]])−−−−−−→ S where

S = [[Ca]][(ν r . ((parse [[M]] ([[P1]]a {[[M]]/x})) | repl r?().c?(x).parse [[M]] [[P1 {[[M]]/x}]]a)) | [[P2]]a].

Lemma B.6 on compatible inputs applies to the process parse [[M]] ([[P1]]a {[[M]]/x}) and re-
duces into a well-formed source context C′a such that

[[Ca]][parse [[M]] ([[P1]]a {[[M]]/x})]
τ−→
∗

[[C′a]][[[P1]]a {[[M]]/x}] ≡ [[C′a]][[[P1 {M/x}]]a]

and for all l ∈ L, C ′l = Clglocs(l,M). Applying Struct, we also have

S
τ−→
∗

[[C′a]][ν r . ([[P1 {M/x}]]a | repl r?().c?(x).parse [[M]] [[P1 {M/x}]]a | [[P2]]a)]

(Since r is fresh in P1, we get rid of the replicated input on r using the rule Dead loop.)

≡ [[C′a]][[[P1 {M/x}]]a | [[P2]]a] ≡ [[C′a]][[[P ′]]a] ≡ [[[A′]]].

118 APPENDIX B. VALUE COMMITMENT

Case Output If A makes a transition labelled νũ ′. c ! M then for some a, P1, P2 we have
Pa = c!〈M 〉.P1 |P2, P ′a = P1 |P2. Note that our sort system limits M to marshallable terms.

By definition, the transition A
ν ũ . c !M−−−−−→ A′ is derived by applying first the base rule

Send term,

a[c!〈M 〉.P]
c !M−−−→ a[P]

Send term

then a context rule Up out for each l ∈ L A
c !M−−−→ A′ ∧ C0

! locs(l,M)−−−−−→ C1

l .C0 | A
c !M−−−→ l .C1 | A′

Up out

 ∀l ∈ L

and finally |ũ′| applications of Open: A
c !M−−−→ A′ ∧ (c 6= r ∧ r ∈ M)

ν r .A
ν r . c !M−−−−−−→ A′

Open

 |ũ′| times

We apply Lemma B.9 to the translations of the source process c!〈M 〉.P1, context Ca and
the source term M . According to this lemma, all source locations and there translations are
updated correctly on output. More precisely, there exists a well-formed source context C′a such

that [[Ca]][c!〈[[M]]〉.[[P1]]a]
c![[M]]−−−→ [[C′a]][[[P1]]a]. Then by applying rule Struct we obtain

[[Ca]][(c!〈[[M]]〉.[[P1]]a) | [[P2]]a]
c![[M]]−−−→ [[C′a]][[[P1 |P2]]a] ≡ [[C′a]][[[P ′]]a] ≡ A′.

�

Lemma B.12 (Functional adequacy for one source silent step). Let A be a well-formed source

system. For all transition step A
τ−→ A′, there exists a trace [[[A]]]

ψ−→
∗

[[[A′]]].

Proof: Let A be a well-formed source system. Suppose A
τ−→ A′ for some label φ and for some

system A′. A makes silent transitions as a result of some internal reductions. We analyse the
rule used for the reduction of A.

Since A is well-formed, and A −→ A′, we have:

A ≡ νN
(∏

l∈L l.Cl |
∏
a′∈A a

′[Pa′] | φ| T
)

A′ ≡ νN ′
(∏

l∈L′ l.C
′
l |
∏
a′∈A a

′[P ′a′] | φ′| T ′
)

Let Ca be the source context built on A where Pa is replaced with a hole:

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

And let C′a be the source context built on A′:

C′a[] = νN ′.
(∏

l∈L′ l.C
′
l |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ′ | T ′
)

Case newloc
If A reduces by rule Newloc then for some a, P1, P2 we have Pa ≡ newloc (x , y).P1 |P2,

P ′a = P1{l/x}{l . Idu/y} |P2. Lemma B.2 applies with φ′ = φ, T ′ = T , N ′ = N ∪ l, L′ = L ∪ l
and the corresponding location l.C ′l = l.0 (a).

B.2. PROOFS 119

Case commit
IfA reduces by rule Commit ext then for some a, P1, P2 we have Pa = commitV l (x ′).P1 |P2

and P ′a = P1{l .Rd (a V)/x ′} |P2 such that Cl = l.Cap (a), C ′l = l.Cap (a V).

Cap = 0 ∨ Cap = Idu

l .Cap (a) | a[commitM l (x).P] −→ l .Cap (a M) | a[P{l .Rd (a M)/x}]
Commit ext

Well-formedness condition 1) implies Cap ∈ {Idu,0} (at most Idu) has been exported for
location l). The translation for both possible capabilities is [[l .Cap (a)]] = [[l .Cap (a V)]] =
cl !〈None〉 | {h(a + h(sl))/l} | ν s . {s/sl}, with the following toplevel restrictions: l, sl for ⊥ and
only sl Idu.

By Lemma B.3, we have

[[commitV l (x ′).P1]]a =

cl?().ν vl . ν wl . (ς(h(sl), h(sl + [[V]]))a | [[P1]]a {rd(a , sl , [[V]] ,wl)/x ′})

The translations [[P]]a | [[l .Cl]] communicate on the private channel cl. We have

[[commitV l (x ′).P1 |P2]]a | [[l .Cl]]
τ−→ ν vl . ν wl . (ς(h(sl), h(sl + [[V]]))a | [[P1]]a {rd(a , sl , [[V]] ,wl)/x ′}) | [[P2]]a

| ({h(a + h(sl))/l} | ν s . {s/sl})
= ν vl.ν wl.[[[[P1]]a{l .Rd (a V)/x ′} | [[P2]]a | l .Cap (a V)]] (B.2.19)

= νvl.νwl.[[[[P
′]]a | l .C ′l]] (B.2.20)

In (B.2.19), we apply structural equivalences to put the restrictions on vl, wl up to the top
level, since they are fresh, and we fold the translation of the new committed location l. Indeed,
our definitions state that ϕ(M1,M2)p = {h(p + M1)/l} | ς(M1,M2)p . In (B.2.20), we apply the
definitions of P ′a and l.C ′l .

Case communication
If A reduces by rule Comm for internal communication then for some a1, a2, P11, P12, P21, P22

we have Pa1 = c!〈M 〉.P11 |P12 and Pa2 = c?(x).P21 |P22 (a1 and a2 may be the same principal).

After the communication, we have P ′a1 = P11 |P12 and P ′a2 = P21{M
]
/x} |P22. For all other

principals a′, P ′a′ = Pa′ . Since the communication is local, the sets of name N are L are the
same.

We show that A can correctly perform a local communication since A can correctly output
M , and then input M .

If the channel c is public (c 6∈ N), the trace Ca1 [Pa1]
ν ũ . c !M−−−−−→ C′a1 [P11 |P12] is enabled for

some well-formed context C′a1 . We can apply Lemma B.11: there is a trace [[Ca1]][[[P]]a1]
ψ−→
∗

[[C′a1]][[[P11 |P12]]a1] = [[[C′a1 [P ′a1]]]].

We rewrite the resulting well-formed system as a context of a2: Let C′a2 be the source
context for a2 after the output:

C′a2 [] = νN ′
(∏

l∈L′ l .C ′l |
∏
a′∈A\{a1,a2} a ′[P ′a ′] | a1[P ′a1] | a2[] | φ′ | T

)
Since within C′a1 , for all principals a′ other than a1, P ′a′ = Pa′ , we have [[[C′a1 [P ′a1]]]] ≡ C′a2 [Pa2].

Now that process Pa1 sent M , principal a2 is able to receive it, and does not learn anything

new:the trace C′a2 [c?(x).P21 |P22]
c?M−−−→ C′a2 [P21{M

]
/x} |P22] is enabled, By Lemma B.11 again,

there is a trace [[[C′a2 [Pa2]]]]
ψ−→
∗

[[[C′a2 [P21{M
]
/x} |P22]]]] = C′a2 [P ′a2] = A′. Thus we have

A′ = [[[Ca1 [Pa1]]]]
ψ−→
∗

[[[C′a1 [P ′a1]]]] ≡ C′a2 [Pa2]
ψ′
−→
∗

[[[C′a2 [P ′a2]]]] = A′.

120 APPENDIX B. VALUE COMMITMENT

Case if − then− else
Both conditional rules (If then and If else) are simple homomorphisms according to our

translation. By Lemma B.10, the equality is preserved by the translation of the source terms.
Thus the translation of the conditional constructs behaves exactly as the source constructs.

Case resolution continuations Rule AddRes allows to add a resolution continuation in the
source system. The only condition on the added term H is that it must be known by the
adversary (in particular it cannot contain secrets that belong to honest principals).

adversary knowsH

0 −→ resolving(H)
AddRes

In the low level, this reduction is simulated by the resolution process receiving a message from
the environment on channel log. Using the definition

R
def
= (repl log?(y1).Q (y1)) | (repl log !〈None〉)

we have

R
log ? (H)−−−−−−→ R |Q (H)

Since every extended translation contains resolution, by Struct, we have that [[[A]]]
log ? (H)−−−−−−→

[[[A]]] | Q (H) ≡ [[[A | resolving(H)]]] ≡ [[[A′]]].
Rule DelRes allows to unconditionally discard a resolution continuation in the source

system. System A is of the form A ≡ A0 | resolving(H), for some A0, H.

adversary knowsH

0 −→ resolving(H)
AddRes

In the low level, we use the specially intended for this purpose replicated output log !〈ok〉 that
communicates with the continuation.

R |Q (H)
τ−→ R |Q1

where Q1 = if check idc(H) and check idc(ok) then

if get idu(H) = get idu(ok) and idc2(H) 6= idc2(ok) then bad !〈get prin(H)〉
Since ok is not an Idc, Q1 reduces to empty process, and R |Q (H)

τ−→
∗

R. Since every

extended translation contains resolution, by Struct, we have that [[[A0 | resolving(H)]]]
τ−→
∗

[[[A0]]] = [[[A′]]]
�

Proof of Theorem 3.1bis Let A be a well-formed source system. Suppose A
φ−→
∗

A′ for
some trace φ and for some system A′. We proceed by induction on the length of the trace label
φ to show that the translation of A can do all the transitions that A can do.

Base case If the length of φ is 1, Lemma B.12 or Lemma B.11 applies, if the transition is

silent or not, respectively. So there exists a target level trace [[[A]]]
ψ−→
∗

[[[A′]]].

Inductive step We know that for all n, if the theorem holds for a source trace of length n
then it also holds for traces of length n+ 1.

Suppose that for some n, we have φ = φ1.φ2 where φ1 is a sequence of n labels, and φ2 is a

label. According to the induction assumption, the theorem holds for A
φ1−→
∗

A′′, and we have

[[[A]]]
ψ1−→
∗

[[[A′′]]]. Since labelled transitions preserve well-formedness of source systems, system

B.2. PROOFS 121

A′′ is still well-formed. We can apply Lemma B.11 (or Lemma B.12 for silent transitions) again

on A′′
φ2−→ A′ and obtain [[[A′′]]]

ψ2−→
∗

[[[A′]]]. By composing the traces, we obtain [[[A]]]
ψ1−→
∗

[[[A′′]]]
ψ2−→
∗

[[[A′]]], that is [[[A]]]
ψ−→
∗

[[[A′]]] with ψ = ψ1.ψ2.
�

B.2.3 Security

Lemma B.13 (Security lemma). For all transition [[[A]]]
ψ−→ S starting from a well-formed source

system A, we have
(1) either there is a source transition A

φ−→ A′ leading to a well-formed source system A′ such
that S −→∗D [[[A′]]];

(2) or S ⇓ e for some e /∈ A.

Proof: Let A be a well-formed source system. Since A is well-formed, we have A = Ca [Pa]
for a well formed source context Ca in which Pa is replaced with a hole:

Ca[] = νN .
(∏

l∈L l.Cl |
∏
a′∈A\{a} a

′[Pa′] | a[] | φ | T
)

Suppose [[[A]]]
ψ−→ S for some transition with label ψ. We perform a case analysis on ψ to find a

matching source transition φ (or a target transition proving cheat).

Message input, using rule

c?(x).P
c ? (M)−−−−−→ P {M/x}

In

By definition of the translation, the only input processes in evaluation context are those
translated from the source system, using the same channel name, plus those introduced by the
translation, that is, the replicated input on channel log in the resolution process R.

Consider the case where ψ = c ? (M) with c 6= log. Thus, for some a, P1, P2 we have
Pa = c?(x).P1 |P2 which is translated to

[[P]]a ≡ ν r . (c?(x).parse x [[P1]]a | repl r?().c?(x).parse x [[P1]]a) | [[P2]]x .

After the input on c, the process parseM [[P1]]a {M/x} runs, with different subcases depending
on the received target term M . We recall the definition of parse:

parse1 x P =

if is rd(x) = ok then

if check idc(get idc(x)) then parsec read(x) P else r !〈None〉
else if is idc(x) = ok then if check idc(x) thenP else r !〈None〉
else if is pair(x) = ok then parse1 (+1 x) (parse1 (+2 x) P)

else parsec x P
parse x P = parse1 x (P | parse2 x)

(1) input Rd: M = rd(M1 , M2 , M3 , M4) for some terms M1, M2, M3, and M4. The first
test is rd succeeds.

If check idc or parsec fail, the translation emits on r and loops on sending. Otherwise we
suppose that there is a source term M ′ such that [[M ′]] = M .

Either M ′ is compatible with the context, and Lemma B.6 applies, or Lemma B.8 proves
the detection of cheat by some external principal within M .

122 APPENDIX B. VALUE COMMITMENT

(2) input Idc: M = idc(M1 , M2 , M3) for some terms M1, M2, and M3. The first test fails,
the second test succeeds, so after two reductions we obtain the process:

[[P]]a
c ? (M)−−−−−→ τ−→ ν r . (if check idc(M) then [[P1 {M/x}]]a | parse2 [[M]] else r !〈None〉

| repl r?().c?(x).parse x [[P1]]a) | [[P2]]a = P ′.

The committed-capability integrity test is defined as follows:

check idc(x)
def
= verify(idc2(x) , idc3(x) , idc1(x)) = ok.

By instantiating x to idc(M1 , M2 , M3), we obtain the test condition verify(M2 , M3 , M1) =
ok.

Discard If the condition equals false, the translation outputs on r and loops back to an
input process on c.

P ′
τ−→ ν r . (r !〈None〉 | repl r?().c?(x).parse x [[P1]]a) | [[P2]]a

τ−→ [[P]]a

The input is thus discarded, and these transitions are simulated by doing no transition in
the source system. In summary, we have

[[P]]a
c ? (M)−−−−−→ τ3−→ [[P]]a while a[Pa] −→= a[Pa]

Valid translation If the condition is satisfied, M1 is the public key of some authenticated
and auditable principal p, and for some l, V we received the translation of l . Idc (p M2 V) =
M ′ (M2 and V are empty if p ∈ A). If the translation of A contains an active substitution
{h(M1 + (+1 M2))/l}, then we choose this l. Otherwise we choose l to be a fresh location
name, so that A ≡ Ca [Pa] | l .⊥ (by Fresh loc).

We recall that M = [[M ′]] = M ′].
– Compatible If Ca is compatible with M ′ then we can apply Lemma B.6 on compatible

context updates.

[[Ca]][parse [[M ′]]] [[P1]]a {[[M
′]]]/x}]

τ−→
∗

(Ca ⊕M ′)[[[P1 {M
′]
/x}]]a]

Since r does not occur in [[P1]]a , we can apply structural equivalences Dead loop and
Par.

(Ca ⊕M ′)[(ν r . ([[P1 {M
′]
/x}]]a | repl r?().c?(x).parse x [[P1]]a)) | [[P2]]a]

≡ (Ca ⊕M ′)[[[P1 {M
′]
/x}]]a | [[P2]]a] = A′

We can build the input source transition : Ca [Pa]
c?M ′
−−−→ (Ca ⊕ M ′)[P1{M

′]
/x} |P2],

by applying Receive term, and then for all l ∈ L, Up in in conjunction with either
In owned or In.

– Cheating otherwise, Cl g locs(l,M ′) does not exist, and p = prin of(Cl) /∈ A. By
construction (choice of l), these capabilities are related (Def B.2.3). Lemma B.8 applies,
and the owner is blamed:

[[Ca]][parse [[M ′]] [[P1 {M
′
/x}]]a] ⇓ get prin(l .Cl)

Thus we also have [[[A]]] ⇓ get prin(l .Cl).

(3) input prin: principal M = prin(M1)

The first three tests fail, and parse reduces to parsec .

parseM [[P1]]a {M/x}
τ−→ τ−→ τ−→ parsec M (P1 {M/x} | parse2 M).

B.2. PROOFS 123

Within parsec , the first test fails, the second one (is prin) succeeds.

If the is pk(M) test succeeds, [[[A]]] contains an active substitution {prin(M1)/p} for some p,
and p is a known principal within A, with [[p]] = p. Since ∀l ∈ L, locs(l, p) = ⊥, Lemma B.4

applies: [[Ca]][parsec M (P1 {M/x} | parse2 M)]
τ−→
∗

[[Ca]][P1 {M/x} | parse2 M]
τ−→
∗

[[Ca]][P1 {M/x}].
We can get rid of the replicated input process by Dead loop. The matching source tran-

sition exists: Ca [Pa]
c?p−−→ Ca [P1{p/x} |P2].

If the is pk(M) test succeeds, the principal represented by M is unknown within Ca . The
test is pair(M) necessarily fails, so there is an output on r and the translation loops. In

summary, [[P]]a
c ? (M)−−−−−→ τ6−→ [[P]]a while Ca [Pa]

c?p−−→ Ca [Pa].

(4) input Idu: M = idu(M1) for some M1. Semantically we can distinguish two cases: M1 is
a valid hash of some principal’s name concatenated with its target secret seed, or it is not.
We apply the following reasoning for both cases (but in the second case the corresponding
source location cannot ever be committed).

For some l, we consider a source label M ′ = l . Idu, or M ′ = l . Idu (e M1) if owned by
some external principal e. If the translation of A contains an active substitution {M1/l},
then we choose this l, otherwise we choose a fresh l. Committable terms are compatible
with any context, so Lemma B.6 applies and yields

[[Ca]][parse [[M ′]]] [[P1 {M
′]
/x}]]a]

τ−→
∗

(Ca ⊕M ′)[[[P1 {M
′]
/x}]]a]

We can get rid of the replicated input process by Dead loop, so that [[Ca]][[[P]]a]
c ? (idu(M1))−−−−−−−−→

∗

(Ca ⊕M ′)[[[P1 {M
′]
/x} |P2]]a] and A

c?M ′
−−−→ (Ca ⊕M ′)[P1{M

′]
/x} |P2].

(5) input pair: M = M1 + M2

The first three tests fail, the fourth (is pair) succeeds.

parseM1 + M2 [[P1]]a {M/x} = (parse1 M1 parse1 M2 [[P1]]a {M/x}) | parse2 M1 + M2

If [[[A]]]
c ? (M1)−−−−−→ S1 then

- M1 is discarded

- M1 is valid: M1 is compatible (M2 is discarded, or M2 is valid and (compatible : M1 +
M2 or Loop)) or Loop

(6) other input: all tests in parse1 and parsec fail, the translation loops.

[[P]]a
c ? (M)−−−−−→ τ6−→ [[P]]a while Ca [Pa]

c?p−−→ Ca [Pa].

We now consider the case when c = log. Receiving on log only occurs within the resolution
process. There are two cases: the reception is done either by an entire copy of resolution process,
or by one of its continuations.

Suppose that there is a committed location l ∈ L, and Cl is committed (Cl = Idc (p H V)
or Cl = Rd (p H V)).

– If the input is done by a copy of R, we have

R = repl log?(x).Q (x)
log ? (M)−−−−−−→ R | Q (M)

Since M can be received by the translation, by rule AddRes we can build the source
transition A

τ−→ A | resolving(M).
– We recall the definition of Q:

Q (y1)
def
= log?(y2).if check idc(y1) and check idc(y2) then

if get idu(y1) = get idu(y2) and idc2(y1) 6= idc2(y2) then bad !〈get prin(y1)〉

124 APPENDIX B. VALUE COMMITMENT

Thus if the input is done by a continuation Q (M ′), we instantiate y1 to M ′, and y2 to
M in all the tests. If M and M ′ are valid translations of some source Idcs that refer
to the same location owned by principal e and are committed to different values, then
Q (M ′) ⇓ e. Otherwise, some of the resolution tests fail. We build a source transition
A

τ−→ A′ where A is a well-formed system whose components are all the same as A except
from T ′ = T \ resolving(M ′).

Silent transition A silent transition ψ = τ is due to an internal reduction within the trans-
lation of A. By definition of the translation, the only reductions possible within a translated
source system are by the following target rules.

(1) Comm

Internal communications happen while committing a location, or –transparently– while
auditing the system by the resolution process.

Commitment of a location For some a, P1, P2, l, V we have Pa = commitV l (x).P1 |P2

which is translated (using Lemma B.3) to

[[P]]a = (cl?().ν vl . ν wl . (ς(h(sl), h(sl + [[V]]))a | [[P1]]a {rd(a , sl , [[V]] ,wl)/x})) | [[P2]]a

Since l ∈ L, Cl = Cap (a V) exists; V may be empty.
– Cl = Cap (a): l has not been committed yet, Cap ∈ {0, Idu}. We have

[[l .Cap (a)]] = cl !〈None〉 | {h(a + h(sl))/l} | ν s . {s/sl}

The location l and the committing subprocess can communicate on cl:

[[l .Cap (a)]]|[[P]]a
τ−→ {h(a + h(sl))/l} | ν s . {s/sl}

| ν vl . ν wl . (ς(h(sl), h(sl + [[V]]))a | [[P1]]a {rd(a , sl , [[V]] ,wl)/x}) | [[P2]]a

≡ ν vl . ν wl . ((ϕ(h(sl), h(sl + [[V]]))a | ν s . {s/sl} | [[P1 {rd(a , sl , [[V]] ,wl)/x}]]a) | [[P2]]a)

≡ [[l .Cap (a V)]] | [[P1{l .Rd (a V)/x} |P2]]a

Commitment updates the location l in A, therefore we have:

A
τ−→ νN

(∏
l′∈L\{l} l .Cl |

∏
a′∈A\{a} a ′[Pa ′]‖l .Cap (a V)‖a[P1{l .Rd (a V)/x} |P2]|φ | T

)
.

– Cl = Cap (a V): l has already been committed, for all Cap 6= ⊥. We have

[[l .Cap (a V)]] = ϕ(h(sl), h(sl + [[V]]))a | ν s . {s/sl}

The translation of the committed location l does not send anything on cl, so the trans-
lation of the committing process is blocked. The source system trying to commit a
committed location is also stuck: the behaviour is the same.

resolution Within our translation, committed locations emit repeatedly their Idcs on
log and the resolution process, or its continuations read Idcs from log. There are two cases:
the silent transition results from communication of a committed location with either an
entire copy of resolution process, or with one of its continuations.

Suppose that there is a committed location l ∈ L. We have either Cl = Idc (p H V),
or Cl = Rd (p H V), whose translations both include ϕ that provides valid active substi-
tutions for l, vl, and wl, and also makes replicated outputs the idc of the capability :
idc(p , vl , wl) on channel log.

B.2. PROOFS 125

– If location l communicates with a copy of R, we have

[[l .Cl]]| | R = [[l .Cl]]| | log?(x).Q (x)
τ−→ [[l .Cl]]|Q (idc(p , vl , wl))

We build the source transition A
τ−→ A | low(Q (idc(p , vl , wl))).

– Suppose that location l communicates with a continuation of the resolution process:
[[l .Cl]]|Q (M). If M is a translation of some source capability l.C such that ClgC does
not exist, then Lemma B.7 applies, and a principal is accused:

Q ([[l . C]])|[[l .Cl]] ⇓ prin of(C)

Otherwise, the continuation is consumed and erased from the source system:

Q ([[l . C]])|[[l .Cl]]
τ−→ ∗[[l .Cl]]

Then we build a source transition A
τ−→ A′ where T ′ = T \ resolving([[l .C]]).

(2) If then

Positive branch of a conditional construct in the translation is taken in two cases:
– for some a, P1, P2, P3,M1,M2 there is Pa = if M1 = M2 thenP1 elseP2 |P3 and the

equational target theory justifies [[M1]] = [[M2]].
The translation of Pa makes a silent step to continue with the first branch: if [[M1]] =
[[M2]] then [[P1]]a else [[P2]]a

τ−→ [[P1]]a . By Lemma B.10, [[M1]] = [[M2]] if and only if
M1 = M2, thus in the source system, we have the matching transition a[if M1 =
M2 thenP1 elseP2 |P3]

τ−→ a[P1 |P3], and so A
τ−→ Ca [P1 |P3].

– for some a, P1, P2 there is Pa = newloc (x , y).P1 |P2, translated with

[[newloc (x , y).P1]]a = ν sl ′0 . ν cl0 . τ.cl0 !〈None〉 | [[P1]]a {cl0/cx } {
sl′0/sx } {

h(a+h(sl′0
))
/l0} {idu(l0)/y}

As τ.A abbreviates if n = n thenA which can only reduce into A, the rule If then
always applies. By Lemma B.2, we have

[[newloc (x , y).P]]a −→ ν sl0 . ν cl0 . ν l0 . ([[a[P{l0/x}{l0 . Idu/y}]]] | [[l0 . 0 (a)]])

This silent transition updates the context with a fresh location, precisely

A
τ−→ νN ∪ {l0}

(∏
l∈L l .Cl |

∏
a′∈A\{a} a ′[Pa ′]|l0 . 0 (a)|a[P1{l0 . Idu/x} |P2]|φ | T

)
.

(3) If else

Negative branch of a conditional construct in the translation corresponds to a negative
conditional in the source system.

For some a, P1, P2, P3,M1,M2 there is Pa = if M1 = M2 thenP1 elseP2 |P3 and the equa-
tional target theory justifies [[M1]] 6= [[M2]].

The translation of Pa makes a silent step to continue with the second branch: if [[M1]] =
[[M2]] then [[P1]]a else [[P2]]a

τ−→ [[P2]]a . Since our translation of terms is secure, that is if
[[M1]] 6= [[M2]] then M1 6= M2, in the source system, we have the matching transition
a[if M1 = M2 thenP1 elseP2 |P3]

τ−→ a[P2 |P3], so A
τ−→ Ca [P2 |P3].

Output transition using rule

c!〈M 〉.P c !<M >−−−−−−→ P
Out

By definition of the translation, the only output processes in evaluation context are those
translated from the source system, using the same channel name, plus those introduced by the
translation, that is, outputs on channel log in the resolution process R.

126 APPENDIX B. VALUE COMMITMENT

Consider the case where ψ = c!M with c 6= log and c 6= bad. Thus, for some a, P1, P2 we
have Pa = c!〈M 〉.P1 |P2 which is translated to

[[P]]a ≡ c!〈M 〉.[[P1]]a | [[P2]]x .

for some c, ũ, a, P1, P2 and for some M ′ such that M = [[M ′]]. According to Lemma B.9,

there is a well-formed source context C′a such that [[Ca]][c!〈M 〉.[[P1]]a]
νũ. c !<M >−−−−−−−−→ [[C′a]][[[P1]]a].

The corresponding source transition is Ca [P1]
νũ. c !M ′
−−−−−−→ C′a [P1], so we also have A

νũ. c !M ′
−−−−−−→

C′a [P1 |P2] ≡ A′.
We now consider the case of an output on channel log. If [[[A]]]

log!M−−−→ S , then it comes from
the translation of some committed location l.Cap(pM ′V) such that M = [[l . Idc (p M ′′)]] and
Idc (p M ′′) � Cap (p M ′V). All emissions on log are replicated, so we have S = [[[A]]] by the rule
replP ≡ P | replP , and thus A −→= A.

Note that the translation of a source process can only output on bad after a series of silent
transitions.

�

Proof of Theorem 3.2bis Let A be a well-formed source system. Suppose [[[A]]]
ψ−→ S for

some series of transitions with labels ψ. We proceed by induction on the length of the label.

Base case If the length of ψ is 1, Lemma B.13 applies.

Inductive step We know that for all n, if the theorem holds for a source trace of length n
then it also holds for traces of length n+ 1.

Suppose that for some n, we have ψ = ψ1.ψ2 where ψ1 is a sequence of n labels, and ψ2 is
a label.

According to the induction assumption, the theorem holds for [[[A]]]
ψ1−→
∗

S , and we have

– A
φ1−→
∗

A′′ for some well-formed A′′ such that S −→∗D [[[A′′]]].
There are two cases.
– If S = [[[A′′]]], then we can apply Lemma B.13 to [[[A′′]]]

ψ1−→ S ′ as A′′ is still a well-
formed source system. Again, there are two cases: either there is a corresponding

source transition A′′
φ2−→
∗

A′ for some well-formed A′ such that S ′ −→∗D [[[A′]]]. Thus

A
φ1−→
∗ φ2−→ A′.

Or there is a cheating principal blamed: S ′ ⇓ e for some e /∈ A.

– Otherwise, S is not a translation of a source system, then S
ψ2−→ S ′ is a deterministic

transition going from S and thus S′ has the same behaviour as S′, so the theorem holds.
– or S ⇓ e for some e /∈ A. Since logging evidence and the resolution process is replicated,

blaming e is still enabled after the transition ψ1. So the theorem also holds for [[[A]]]
ψ−→ S ′.

�

Proof of Theorem 3.1(Functional adequacy) Let A be a well-formed source system as

defined in Section 3.2.5. Let A
φ−→
∗

A′ be a series of source transitions. Since A and A′ can
be seen as an extended source system with an empty set of resolution continuations (T = ∅),
and since traces of the extended systems include φ∗, Theorem 3.1bis applies. We have that

[[[A]]]
φ−→
∗

[[[A′]]].

�

Theorem B.14 (Weakened Theorem 3.2). For all transitions [[[A]]]
ψ−→
∗

S starting from a well-
formed source system A, we have

B.2. PROOFS 127

(1) either there are source transitions A
φ−→
∗

A′ leading to a well-formed source system A′ such

that for some resolution store T S −→∗D [[[A′ | T]]]
τ−→
∗

[[[A′]]]; or S ⇓ e for some e /∈ A;

(2) if S ⇓ M , then M /∈ A.

Proof: Let A be a well-formed source system as defined in Section 3.2.5. Let [[[A]]]
ψ−→
∗

S be
low-level transitions. Since A can be seen as an extended source system with an empty set of
resolution continuations, Theorem 3.2bis applies. We have

(1) either there are source transitions A
φ−→
∗

A′ | T leading to a well-formed extended source
system A′ such that S −→∗D [[[A′ | T]]]; or S ⇓ e for some e /∈ A;

In the latter case, the proof is finished. In the former case, we can discard the resolution

continuations in T using Lemma B.15: A′ | T φ′−→
∗

A′.By Theorem 3.1 we have that

[[[A′ | T]]]
τ−→
∗

[[[A′]]]. By transitivity, we have A
φ′−→
∗

A′.

(2) if S ⇓ M , then M /∈ A.

�

Lemma B.15 (Discarding transitions related to low-level records). For all well-formed source
systems A and A′ that contain no target continuations, let T be a non-empty parallel composition

of target continuations, we have that if there is a series of labelled transitions A
φ−→ A′ | T then

there is a series of transitions A
φ′−→ A′.

Proof: Let A and A′ be well-formed source systems that contain no target continuations, let

T be a set of target continuations, and A
φ−→ A′ | T . We proceed by induction on the length

of φ. If φ is empty, then A′ = A, T = 0.

Base case. If the length of φ is 1, then necessarily the used transition rule is AddRes. Since
we have A′ = A and φ = τ , me also have A

ε−→ A′.

Inductive case. Suppose that the lemma is true when the length of the label is n. Suppose

that A
φ−→ φ1−→ A′ | T when the length of φ is n and the length of φ1 is 1. For some well-formed

A1 with any target continuations and for some T1 we have A
φ−→ A1 | T1. By the induction

hypothesis, there is a series of transitions A
φ′1−→ A1. We examine the rule used for the transition

A1 | T1
φ1−→ A′ | T .

If rules AddRes or DelRes are used, then A′ = A1, and we have A
φ′1−→ A′.

If any other rule is used, then T = T1, and so by Par we have A1
φ1−→ A′. By composing

with A
φ′1−→ A1 we obtain A

φ′1−→ φ1−→ A′. �

Theorem B.16 (Weakened security 2). For all transitions [[[A]]]
ψ−→
∗

S starting from a well-
formed source system A, we have

(1) either there are source transitions A
φ−→
∗

A′ leading to a well-formed source system A′ such

that S −→∗D [[[A′ | T]]] and [[[A′]]]
ψ′
−→
∗

[[[A′ | T]]]; or S ⇓ e for some e /∈ A;

(2) if S ⇓ M , then M /∈ A.

Proof: Let A be a well-formed source system as defined in Section 3.2.5. Let [[[A]]]
ψ−→
∗

S be
low-level transitions. Since A can be seen as an extended source system with an empty set of
resolution continuations, Theorem B.14 applies. We have

128 APPENDIX B. VALUE COMMITMENT

(1) either there are source transitions A
φ−→
∗

A′ | T leading to a well-formed extended source
system A′ | T such that S −→∗D [[[A′ | T]]]; or S ⇓ e for some e /∈ A;

In the latter case, the proof is finished. In the former case, we can discard the resolution
continuations using Lemma B.15: A

τ−→
∗

A′, and also A′
τ−→
∗

A′ | T .By Theorem 3.1 we

have that [[[A′]]]
ψ′
−→
∗

[[[A′ | T]]].

(2) if S ⇓ M , then M /∈ A.

�

Appendix C

Offline e-cash

C.1 Semantics of source language

A →a A′ A reduces to A′

(n /∈ fn(P1) ∧ n /∈ fn(P2))

U [withdraw!B (x) .P1] | B[withdraw?U .P2] →a ν l . (U [P1{l/x}] | B[P2] | l .(B U ∅))
W

(s /∈ fn(P))

U [spend!BM c l] | M[spend?B (x) (x1)(x2).P] | l .(B U ∅) →a ν s . (M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | l .(B U { s }))
S

M[deposit!B 〈l,s〉] | B[deposit?M (x).P] | l .(B U { s }) →a B[P{rcp(l,B,U,s)/x}] | l .(B U { s })
D

p1[c !M] | p2[c?(x).P] →a p2[P{M/x}]
Comm

p[ifM = M thenP1 elseP2] →a p[P1]
If then

¬M1 = M2

p[ifM1 = M2 thenP1 elseP2] →a p[P2]
If else

A
φ−→a A′ condition A makes a φ transition to A′

A →a A′

A
τ−→a A′

ALtSilent

U [withdraw!B (x) .P]
withdraw!U B−−−−−−−→a ν l . (U [P{l/x}] | l .(B U ∅)) (l /∈ fn(P))

ALtWithdraw

B[withdraw?U .P]
νl.withdraw?BU−−−−−−−−−→a B[P] | l .(B U ∅)

ALtWithdrawn

U [spend!BM c l] | l .(B U ∅) νs.spend!MB l s−−−−−−−−−−→a l .(B U { s })
ALtSpendSimple

U [spend!BM c l] | l .(B U I) νs.spend!MB l s−−−−−−−−−−→a l .(B U I]{ s })
ALtSpend

M[spend?B (x) (x1)(x2).P] | l .(B U I) νs.spend?MB c l s U−−−−−−−−−−−−→a M[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}] | (l .(B U I]{ s }))
ALtSpent

M[deposit!B 〈l,s〉] | l .(B U I) deposit!MB l s−−−−−−−−−→a l .(B U I]{ s })
ALtDeposit

M[deposit!B 〈l,s〉] | l .(B U { s }) deposit!MB l s−−−−−−−−−→a l .(B U { s })
ALtDepositSimple

B[deposit?M (x).P] | l .(B U I) deposit?BM l s U−−−−−−−−−−→a B[P{rcp(l,B,U,s)/x}] | l .(B U I]{ s })
ALtDepositedD

A[c !M]
c !M−−−→a A[0]

ALtSend term

A
c !M−−−→a A′ ∧ (r ∈ fnfv(M) ∧ c 6= r)

ν r .A
νr.c !M−−−−−→a A′

ALtOpen

A[c?(x).P]
c ? p−−→a A[P{p/x}]

ALtReceive term

129

130 APPENDIX C. OFFLINE E-CASH

A[c?(x).P] | l .Cl
c ? rcp(l,B,U,s)−−−−−−−−→a A[P{rcp(l,B,U,s)/x}] | (l .Cl g l .(B U { s }))

ALtRecv known spt

A
φ−→a A′ ∧ c /∈ φ

ν c .A
φ−→a ν c .A′

ALtScope

A1
φ−→a A′

1 ∧ (bvbn(φ) ∩ bvbn(A2)) = ∅

A1 | A2
φ−→a A′

1 | A2

ALtPar

A1 ≡ A2 ∧ (A2
φ−→a A3 ∧ A3 ≡ A4)

A1
φ−→a A4

ALtLab struct

C.2 Detectability

Lemma C.1 (Functional adequacy). Le A be a high level system. If A
φ−→a A′ then [[[A]]]

φ−→a

[[[A′]]] | A′′ for some A′′.

Proof: By induction on the trace. A′′ is composed of the system log and instances of the
Resolution processes. �

Proof of Theorem 3.7 (sketch) Let A be a high level system. Suppose that A
φ−→i double-

accepts. There exist configurations A1, A′1, A2, A′2, labels φ1, φ2, φ3, φ4, identifiers l, s, s′ and
principals B,M,U such that

(1) A
φ1−→a A1,

(2) A1
φ2−→a A′1 such that φ2 = spend?MB c l s U or φ2 = deposit?BM l s U , or φ2 =

? (rcp(l,B,U,s)),

(3) A′1
φ3−→a A2,

(4) A2
φ4−→a A′2 such that φ4 = spend?MB c′ l s ′ U or φ4 = deposit?BM l s ′ U , or φ4 =

? (rcp(l,B,U,s ′))

The proof is by case analysis of the possible situations that could lead to double-accepting
(different φ2 and φ4).

For instance, we suppose that φ2 = spend?MB c l s U and φ4 = spend?MB c′ l s ′ U . The
LTS rule (Spend?) must have been applied, soA1 must contain a processM[spend?B (x) (x1)(x2).P]
in an evaluation context. Its implementation reduces to

M[[[P{c/x}{〈l,s〉/x1}{rcp(l,B,U,s)/x2}]] | repl log ! rcp(l,B,U,s)]

which contains a replicated log record rcp(l,B,U,s). Similarly, the implementation of A2 also
reduces to a system that contains a replicated log record rcp(l,B,U,s ′). We thus have

[[[A]]]
φ1 ;φ2 ;φ3 ;φ4−−−−−−−−→a A′ | Resolution | repl log ! rcp(l,B,U,s) | repl log ! rcp(l,B,U,s ′)

The Resolution process thus can consume one of each log entries and run the identify process

identify rcp(l,B,U,s) rcp(l,B,U,s ′) (x).bad ! x

which reduces by rule Identify to bad !U . So [[[A]]] detects cheating. �

Appendix D

Flexible pre- and post-conditions for
F7

Lemma D.1 (Red Let Eval). If A ⇓M and B{M/x} ⇓M ′ then let x = A in B ⇓ M’.

Proof: Suppose that A −→∗ νã.A′ � M . By successive applications of the context rule (Red
Let), we have let x = A in B −→∗ let x = νã.A′ �M in B. After renaming, by (Heat Res Let)
and (Heat Fork Let), we have let x = νã.A′ �M in BV νã. let x = A′ �M in B V νã.A′ �
let x = M in B. By (Red Let Val) we have let x = M in B −→ B{M/x}. By hypothesis,
B{M/x} −→∗ νb̃.B′ � M ′ for some b̃, B′. By (Red Res) and (Red Fork 2) νã.A′ � let x = M
in B −→∗ νã.νb̃.A′ � B′ � M ′ so by transitivity and by applying the definition of ⇓, we have

let x = A in B ⇓M ′. �

Lemma D.2 (Typ Seq Assume). If Γ ` e : T ′, T ′ = (x : P){C}, and fv(C ′) ⊆ dom(Γ), then
Γ ` assume C’; e : (x : P){C ∧ C ′}.

Proof: Since Γ ` e : T ′, we have Γ ` �. Since we also assume fv(C ′) ⊆ dom(Γ), we can
apply the rule (Typ Assume) yielding Γ ` assume C’ : (: unit){C ′} (F-Assume). From the
hypothesis Γ ` e : T ′ we obtain Γ, C ′ ` e : T ′. Then by (Sub Refine Right) and (Sub Refl) we
derive the subtyping judgement Γ, C ′ ` (x : P){C} <: (x : P){C ∧C ′}. Finally, we use the rule
(Exp Subsum), yielding Γ, C ′ ` e : (x : P){C ∧C ′} (F-And). Then we apply the rule (Typ Let)
to the formulas (F-Assume) and (F-And) yielding Γ ` assume C’; e : (x : P){C ∧ C ′}. �

Proof of Lemma 6.1 Let A be a closed expression where Call and Return do not occur.

Evaluation (⇒) Suppose that for some value M we have A −→∗ νã.e′ � M . We show that
[[e]]E ⇓ [[M]]E by induction on the number n of reduction steps. If n = 0, we have A = νã.e′ �M ,
and by definition of the translation we have [[A]]E = νã.[[e′]]E � [[M]]E and so [[e]]E ⇓ [[M]]E .

The reductions of [[A]]E are the same as the reductions of A, augmented with the forked
assumptions introduced by the translation as follows. We perform a case analysis on the first
used reduction rule.

– Suppose that the first used reduction rule is (Red Rec Fun). Since all functions are
annotated we have A = (M : T) N and

(M : T) N −→ e{N/x}{M/f} ⇓ R

where M= (rec f:T. fun x → e). Then we have

[[(M : T)N]]E
4
=(let r =[[M]]E [[N]]Ein assume Return(f,x,r); r)
4
=(let r = (rec f:T. fun x →assume Call(f,x);[[e]]E)[[N]]Ein

assume Return(f,x,r); r)

131

132 APPENDIX D. FLEXIBLE PRE- AND POST-CONDITIONS FOR F7

First the expression let-bound to r reduces according to the rule (Red Rec Fun):

(rec f:T. fun x →assume Call(f,x);[[e]]E) [[N]]E −→ (assume Call(f,x);[[e]]E){[[N]]E/x}{[[M]]E/f}

followed by a series of (Red Let Eval) reductions. We have

(1) By (Heat Assume), assume Call([[M]]E ,[[N]]E)−→ assume Call([[M]]E ,[[N]]E)� (),
so assume Call([[M]]E ,[[N]]E)⇓ ().

(2) Since e{N/x}{M/f} ⇓ R, by induction hypothesis we have [[e]]E{[[N]]E/x}{[[M]]E/f} ⇓
[[R]]E .

(3) By applying (Red Let Eval) to (1) and (2), we get [[M]]E [[N]]E ⇓ [[R]]E .

(4) By (Heat Assume), assume Return([[M]]E ,[[N]]E ,[[R]]E)⇓ ().

(5) By applying (Red Let Eval) to (4) and [[R]]E ⇓ [[R]]E , we get

(assume Return(f,x,r); r){[[N]]E/x}{[[M]]E/f}{[[R]]E/r} ⇓ [[R]]E

(6) By applying (Red Let Eval) to (3) and (5), we get

(let r =[[M]]E [[N]]Ein assume Return(f,x,r); r) ⇓ [[R]]E

– The proof uses simple induction arguments for other cases since their translation is ho-
momorphic.

Evaluation (⇐) The proof is analogous to the proof of the (⇒) direction, by induction on
the length of the derivation. The (Red Let Eval) reductions for the additional assumed formulas
are omitted in the system before translation.

Safety (⇒) Suppose that A is safe, and for some A′ and S, A →∗ A′ and A′ V S. By
induction on the length of derivation and case analysis of the first reduction. (Base case) If
A′ = A and S = νã.(

∏
assume Ci) � (

∏
cj !Mj) �

∏
Lk{ek} then [[A]]E V νã.(

∏
assume Ci) �

(
∏
cj !Mj) �

∏
[[Lk]]E{[[ek]]E}. Since A is safe, if ek = assert Ck then {C1 . . . Cm} ` Ck. But

since [[assert Ck]]E = assert Ck, we have that [[A]]E is also safe.
(Inductive case) We suppose that the lemma holds for all A′ such that A→ A′, and we show

that it holds also for A.
(Red Assert) If A = assert C then [[A]]E = A so A is safe iff [[A]]E is safe.
(Red Rec Fun) If A = (M : T) N where M= (rec f:T. fun x → e), then we have

(M : T) N → e{N/x}{M/f}

[[(M : T)N]]E
4
= (let r =[[M]]E [[N]]Ein assume Return(f,x,r); r)
4
= (let r = (rec f:T. fun x →assume Call(f,x);[[e]]E)[[N]]Ein assume Return(f,x,r); r)

First the expression let-bound to r reduces according to the rule (Red Rec Fun):

(rec f:T. fun x →assume Call(f,x);[[e]]E) [[N]]E

−→ (assume Call(f,x);[[e]]E){[[N]]E/x}{[[M]]E/f}
V assume Call([[M]]E , [[N]]E) � ([[e]]E{[[N]]E/x}{[[M]]E/f})

By induction hypothesis, since e{N/x}{M/f} safe, [[e]]E{[[N]]E/x}{[[M]]E/f} is also safe; so
with an additional assume it is also safe.

(Other rules) The translation of the expressions involved in other reduction rules is homo-
morphic, so the induction principle applies.

133

Safety (⇐) The proof is symmetric to Safety (⇒). By hypothesis A does not use Call or
Return. So if [[A]]E is safe, then the absence of assumes of Call and Return does not influence
the asserts, so A is also safe.

Typing (⇒) We use the typing derivation of E ` A : Te to construct the typing derivation
of E ` [[A]]E : Te (both in RCF).

– Typing derivations of non-functional values are the same for the translated values.
– If A is a function A =(rec f:T. fun x → e), then Te = x : T1 → T2 and [[A]]E =(rec f:T.

fun x →assume Call(f,x); [[e]]E)
Let E′ = E, f : T, x : T1. The derivation for A is:
E ` Te <: T E′ ` e : T2(H −Body)

E ` A : Te (Fun)

We construct the derivation for [[A]]E using the induction hypothesis on (H-Body):

E ` Te <: T

E′ ` [[e]]E : T2 (H −Body, induction)

E′, Call(f, x) ` [[e]]E : T2 (Strengthen)

E′ ` assume Call(f,x);[[e]]E : T2 (Assume,Let)

E ` [[A]]E : Te (Fun)

– If A is a function application A =(M:T) N, then T = x : T1 → T2 and Te = T2{N/x})
and
[[A]]E =let r = [[M]]E [[N]]E in assume Return(f:T,x,r); r)
The typing derivation for A is:
E `M : T (H1)

E ` (M : T) : T (Annot)
E ` N : T1(H2)

E ` (M : T)N : T2{N/x} (App)

We construct the derivation for [[A]]E using the induction hypotheses on (H1) and (H2):

E ` [[M]]E : T (H1, ind) E ` [[N]]E : T1 (H2, ind)

E ` [[M]]E [[N]]E : T2{N/x} (App)
∆

E ` let r =[[M]]E [[N]]E in assume Return(f:T,x,r);r : T2{N/x} (Let)

where ∆ =
E, r : T2{N/x}, Return(f, x, r) ` r : T2{N/x}(V ar)

E, r : T2{N/x} ` assume Return(f,x,r);r : T2{N/x} (Assume,Let)

– For other expressions, the derivations are constructed recursively.

Typing (⇐) We use the typing derivation of E ` [[A]]E : Te to construct the typing derivation
of E ` A : Te. The construction is mainly symmetric to that of Typing(⇒). We simplify the
derivations for functions and function applications, by removing the assumes and let bindings
introduced by the translation. Since neither A nor Te can mention Call and Return, these
formulas are never used to derive formulas in the typing derivation of [[A]]E . We can erase them
from the environment in typing derivations for A. �

Proof of Lemma 6.2 (⇒) Let e be an expression, Γ a typing environment, T a type. Suppose
that Γ ` [[e]]E : T in RCF. By induction on the structure of the expression e, we construct a
typing derivation of Γ ` e : T in RCFE .

– If e is a function rec f: Tf . fun x → e2, then T is of the form x : T1 → T2 and

[[e]]E
4
= rec f:Tf . fun x →assume Call(f,x);[[e2]]E

The rule (Typ Fun) must have been used for the typing Γ ` [[e]]E : T in RCF; it has two
hypotheses: Γ ` x : T1 → T2 <: Tf (H-Sub) and Γ, f : Tf , x : T1 ` e2 : T2 (H-Assume-
Body). The judgment (H-Assume-Body) results from the application of rules (Typ Let)
and (Typ Assume), with the hypothesis

Γ, f : Tf , x : T1,Call(f,x) ` [[e2]]E : T2(H-Body)

134 APPENDIX D. FLEXIBLE PRE- AND POST-CONDITIONS FOR F7

By induction hypothesis, we have

Γ, f : Tf , x : T1,Call(f,x) ` e2 : T2(H-Body-Ind) in RCFE

Now we construct the typing judgement Γ ` e : T in RCFE . by applying the rule (Typ
Fun PrePost) to the hypotheses(H-Sub) and (H-Body-Ind).

– If e is a function application (M:Tf) N, then Tf is of the form x : T1 → T2 and

[[e]]E
4
= let r =[[M]]E [[N]]Ein assume Return(M:Tf ,N,r); r

The rule (Typ Let) must have been used for the typing Γ ` [[e]]E : T in RCF; it has
three hypotheses: Γ ` [[M]]E [[N]]E : T2{N/x} (H-App), r /∈ T2 (H-Fv), and Γ, r :
T2{N/x} ` assume Return(M:Tf ,N,r);r : T (H-Return). We apply (Typ Seq Assume) to
the judgment (H-Return), yielding Γ, r : T2{N/x} ` assume Return(M:Tf ,N,r);r : (r :
P){C ∧ Return(M:Tf ,N,r)} = T where T2{N/x} = (r : P){C}.
The judgment (H-App) involves the hypotheses Γ ` [[M]]E : Tf and Γ ` [[N]]E : T1. By
induction hypothesis, we have Γ ` (M) : Tf (H-Fun-Ind) and Γ ` N : T1 (H-Arg-Ind) in
RCFE .
From (H-Fun-Ind) we get Γ ` (M : Tf) : Tf (H-Fun). In RCFE we can apply the rule
(Typ App PrePost) to the hypotheses (H-Fun) and (H-Arg-Ind), and obtain Γ ` ((M :
Tf) N) : (r : P){C ∧ Return(M:Tf ,N,r)} = T .

– otherwise, the translation is a homomorphism, and the induction hypotheses apply.

(⇐) Let e be an expression, Γ a typing environment, T a type. Suppose that Γ ` e : T in
RCFE . By induction on the structure of the expression e, we construct a type derivation of
Γ ` [[e]]E : T in RCF.

– If e is a function rec f: Tf . fun x → e2, then T is of the form x : T1 → T2. Typing
rule (Typ Fun PrePost) applies yielding hypotheses Γ ` T <: Tf (H-Sub) and Γ, f :
Tf , x : T1,Call(f,x) ` e2 : T2 (H-Body). By induction hypothesis, we have Γ, f : Tf , x :
T1,Call(f,x) ` [[e2]]E : T2 (H-Body-Ind).
Now we construct an RCF typing judgment for [[e]]E .

[[e]]E = rec f:Tf . fun x →assume Call(f,x);[[e2]]E

From (H-Body-Ind) by applying (Typ Assume) and folding (Typ Let) we obtain Γ, f :
Tf , x : T1 ` assume Call(f,x);e2 : T2 (H-Body-Assume). We can fold the definition of
[[e]]E and by applying rule (Typ Fun) to the judgments (H-Body-Assume) and (H-Sub)
we obtain Γ ` [[e]]E : T in RCF.

– If e is a function application M’ N, since we all functional values are annotated, we know
that M ′ = (M : Tf) for some Tf . Thus we have e = (M:Tf) N, and Tf is of the form
x : T1 → T2, and T2 = (r : P){C}. Typing rule (Typ App PrePost) applies yielding
hypotheses Γ ` (M:Tf) : Tf (from which we obtain Γ ` M : Tf (H-Fun)) and Γ ` N : T1

(H-Arg) with T = (r : P){C ∧ Return(M:Tf ,N,r)}{N/x}. By induction hypothesis, we
have Γ ` [[M]]E : Tf (H-Fun-Ind) and Γ ` [[N]]E : T1 (H-Arg-Ind).
Now we construct an RCF typing judgment for [[e]]E .

[[e]]E = let r =[[M]]E [[N]]Ein assume Return(M:Tf ,N,r); r

We can apply the rule (Typ App) to (H-Fun-Ind) and (H-Arg-Ind) and obtain Γ `
[[M]]E [[N]]E : T2{N/x} (H-App).
From (Typ Seq Assume) we obtain Γ, r : T2{N/x} ` assume Return(M:Tf ,N,r);r : T
(H-Return). By combining the hypothesis r /∈ T2 with (H-Return) and (H-App), we can
apply the rule (Typ Let).

135

– otherwise, the translation is a homomorphism, and the induction hypotheses apply.
�

Lemma D.3 (Predicate abstraction). Let σ be the function that replaces every fact Pre(M,N)
with the formula (#Pre(f,x))[M/f,N/x] and every fact Post(M,N,O) with the formula (#Pre(f,
x,r))[M/f,N/x,O/r].

Let E be an environment that binds a function variable f . Let axioms(E) be the formulas
of E where Pre or Post occur, and E = E′, axioms(E). If E′ ` axioms(E)σ then

(1) for any formula C,if E ` C then (E ` C)σ;

(2) for any types T and T ′,if E ` T <: T ′ then (E ` T <: T ′)σ;

(3) for any expression e and type T ,if E ` e : T then (E ` e <: T)σ.

Proof of Theorem 6.5 The proof transforms the type derivation of e0 into that of e1 using
the Lemma on predicate abstraction for derivation, subtyping and typing judgments.

Let σ be the substitution replacing Pre and Post with #Pre and #Post respectively.
– We consider a sub-derivation of E ` (h f : T4) : T4 within e0. By assumption we know

that E ` h : T , so E ` h f : T3[f/g] is derivable, and we have E ` T3[f/g] <: T4.
– By assumption we know that H can be given the type T in an environment with no

assumptions on predicates Pre or Post. By Lemma D.3 for typing, within e1 the expression
Hf can be given type Tσ. Then the application Hf f can be given type T3[f/g]σ.
Since E contains the binding f : Tf , we have axioms(E) = φf :Tf , which hold trivially
after applying the substitution σ: after macro-expansion, both judgments E `∀x1. C1

⇒#Pre(f,x1) and E `∀x1,x2. C1 ∧#Post(f,x1,x2) ⇒C2 are tautologies. Lemma D.3 for
subtyping applies so we have (E ` T3[f/g] <: T4)σ.

�

136 APPENDIX D. FLEXIBLE PRE- AND POST-CONDITIONS FOR F7

Appendix E

Sample code

E.1 Multi-party protocol: client code

let player code me server fmove addr =
let sk = getPrivateKey usage me in
let vks = getPublicKey usage server in
let inout = connect addr in
send inout (msg2bytes (Hello(me)));

(match bytes2msg (recv inout) with Start (n,players,ssig1) → (* Receive invitation*)

let challenge = payload2bytes (Start data(n,players)) in
if rsa verify prin usage server vks challenge ssig1 then (* Auth check *)

(assert(GameC(server,players,n));
let mem1 : prin → prin list → bool = mem in
let test1 = mem1 me players in if test1 then (* Check if I am a registered player

*)

let move = fmove n in (* Instantiate my move for this game *)

let bmove = move2bytes (me,n,move) in
let hash = sha1 bmove in (* Compute my commitment *)

assume (Commits(me,n,hash)); (* Accept the game rules *)

let smove = payload2bytes (Commit data(n,hash)) in
let mysig = Principals.rsa sign usage me sk smove in
send inout (msg2bytes (Sealed(hash,mysig))); (* Sign *)

(match bytes2msg (recv inout) with HashList (hashes,ssig2,sigs) → (* All committed *)

let commitment = payload2bytes (CommitList data(n,players,hashes)) in
let t1 = rsa verify prin usage server vks commitment ssig2 in (* Auth *)

if t1 then (assert(CommitListC(server,n,hashes));
let r1 = zip3 players hashes sigs in (* Link players and commitments *)

if forall hash3 verify hash3 n r1 then (* Auth check *)

(assert(ValidHashes3(n,r1));
send inout (msg2bytes (Move (move))); (* Reveal my move *)

(match bytes2msg (recv inout) with MoveList (moves) → (* All revealed *)

let evl = zip4 players hashes moves sigs in (* Create evidence *)

if exists me move evl then (* Check my presence *)

if forall move verify move n evl then (* Check validity of others’ moves *)

if forall hash verify hash n evl then (* Check validity of others’ commitments,

again *)

if winning move move moves then (* Check that victory is merited *)

137

138 APPENDIX E. SAMPLE CODE

let e = ssig2, evl in (* Assemble complete evidence *)

auditWins server n me move e; (* Use this evidence for audit*)

print string ((Data.istr me)ˆ": I am the winner.\n")

else ()
else print string ((Data.istr me)ˆ": I lost.\n")
| → failwith "invalid move-list message")
) else failwith "bad hashes")
else failwith "bad signature for hash list"

| → failwith "invalid hash-list message")
else failwith "I am not a registered player")
else failwith "bad game start signature"

| → failwith "invalid challenge message")

E.2 List Library Interface

assume
(∀x, u. Mem(x,x::u)) ∧
(∀x, y, u. Mem(x,u) ⇒Mem(x,y::u)) ∧
(∀x, u. Mem(x,u) ⇒ (∃y, v. u = y::v ∧ (x = y ∨Mem(x,v))))

val mem: x:α → u:α list → r:bool{r=true ⇒Mem(x,u)}

val find: f:(α → bool) →
u:α list{(∀x. Mem(x,u) ⇒Pre(f,x))} →
r:α { Mem(r,u) }

val forall: t:(α → bool) →
xs:α list {(∀x. Mem(x,xs) ⇒Pre(t,x))} →
b:bool {(b = true ⇒ (∀x. Mem(x,xs) ⇒Post(t,[x],true))) }

val exists: t:(α → bool) →
xs:α list {(∀x. Mem(x,xs) ⇒Pre(t,x))} →
b:bool {(b = true ⇒ (∃x. Mem(x,xs) ∧Post(t,[x],true))) }

val iter: f:(α → unit) →
l:α list {(∀x. Mem(x,l) ⇒Pre(f,[x]))} →
r:unit {∀x. Mem(x,l) ⇒Post(f,[x],())}

assume
(∀x, y, u, v. Mem2((x,y),(x::u,x::v)) ∧
(∀x, y, u, v, x’, y’. Mem2((x,y),(u,b)) ⇒Mem2((x,y),(x’::u,y’::v))) ∧
(∀x, y, u, v. Mem((x,y),(u,v)) ⇒ (∃y1,y2,t1,t2. l1=y1::t1 ∧ l2=y2::t2
∧ ((y1=x ∧ y2=y) ∨Mem2((x,y),(t1,t2))))))

val map: f:(α →β) →
l:α list {(∀x. Mem(x,l) ⇒Pre(f,[x]))} →
r:β list {∀x,y. Mem2((x,y),(l,r)) ⇒Post(f,[x],y)}

assume (∀f. Hereditary(f) ⇔
(∀v,acc,h,t. Inv(f,v,acc,hd::tl) ⇒ (Pre(f,[acc;hd]) ∧ (∀r. Post(f,[acc;hd],r) ⇒ Inv(f,v,r,tl)))))

val fold : v: γ→ f:(α →β→α) {Hereditary(f)} →
acc:α →
xs:β list {Inv(f,v,acc,xs)} →
r:α { (xs = [] ∧ r=acc) ∨ Inv(f,v,r,[]) }

	A formal approach to audit logs
	Preliminaries
	Security protocols: notation and goals
	The protocols used in the following chapters
	Simple message authentication
	Rock-Paper-Scissors
	Multi-party game

	Applied pi calculus
	Refinement types for ML
	Syntax and operational semantics of the language
	Refinement type system
	Type safety
	Pre-defined F7 libraries
	!Crypto! library
	!Principals! library

	F7 implementation

	The use of logs within optimistic protocols
	A cautiously optimistic approach to security
	Value commitment
	A language with value commitment
	Example: an online game
	Distributed cryptography implementation
	Model and translation of environment interactions
	Correctness results

	Offline e-cash
	A language for offline e-cash
	Properties of the language
	Log-based implementation
	Model and translation of environment interactions
	Correctness results

	Related work on the use of audit logs
	Online games
	Multi-party protocols
	Implementations of secure audit logs

	Conclusions and future work

	A general definition of auditability
	A language-based approach to auditing
	Modelling security protocols in F7
	A definition of auditability
	Auditability, illustrated
	Naive (non-auditable) mail
	Rock-Paper-Scissors
	Value commitment

	Discussion and related work on auditability

	Automatic verification of auditability
	Static analysis of auditability
	Application: a protocol for n-player games
	Related work on checking audit-related properties

	Using pre- and post-conditions to verify auditability
	Towards more flexibility for F7
	Refinements for pre- and post-conditions
	Event-based semantics
	Macro-expansion semantics
	Subtyping-based semantics

	Reusable typed interface for lists
	Compact types for audit
	Pre- and post-conditions for protocol implementations
	XML digital signatures
	X.509 certification paths

	Related work
	Conclusions and future work

	Bibliography
	Preliminaries (complements)
	Applied pi calculus
	Reduction semantics
	Structural equivalence
	Labelled semantics

	RCF
	Evaluation
	Subtyping
	Typechecking

	Value commitment
	Semantics of the source language
	Equational theory
	Structural equivalence
	Reduction semantics
	Ordering capabilities
	State transitions
	Labelled semantics

	Proofs
	Preliminary lemmas
	Functional adequacy
	Security

	Offline e-cash
	Semantics of source language
	Detectability

	Flexible pre- and post-conditions for F7
	Sample code
	Multi-party protocol: client code
	List Library Interface

